|
[1] J. Kraft, B. Loffler, M. Knaipp, and E. Wachmann, "Hot Carrier Degradation of p-LDMOS Transistors for RF Applications," 2007: IEEE International Reliability Physics Symposium Proceedings. 45th Annual, pp. 626-627, doi: 10.1109/relphy.2007.369983. [2] A. Kashif, S. Azam, and M. Imran, "Switching behavior of RF-LDMOS for class-F power amplifier in TCAD," 2014: IEEE Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology (IBCAST) Islamabad, Pakistan, pp. 478-481, doi: 10.1109/ibcast.2014.6778192. [3] G. Arienti et al., "Optimization of HV LDMOS devices accounting for packaging interaction," 2015: IEEE 27th International Symposium on Power Semiconductor Devices & IC's (ISPSD), pp. 305-308, doi: 10.1109/ispsd.2015.7123450. [4] A. Kashif, S. Azam, K. Hayat, and M. Imran, "Advantage of TCAD to analyze RF-LDMOS for the broadband power amplifier," 2013: IEEE Proceedings of 2013 10th International Bhurban Conference on Applied Sciences & Technology (IBCAST), pp. 385-388, doi: 10.1109/ibcast.2013.6512185. [5] J. F. Chen, W. Kuo-Ming, L. Kaung-Wan, S. Yan-Kuin, and S. L. Hsu, "Hot-carrier reliability in submicrometer 40V LDMOS transistors with thick gate oxide," 2005: IEEE, pp. 560-564, doi: 10.1109/relphy.2005.1493148. [6] J. Wei, Y. Wang, M. Zhang, H. Jiang, and K. J. Chen, "High-speed power MOSFET with low reverse transfer capacitance using a trench/planar gate architecture," 2017 : IEEE International Reliability Physics Symposium, pp. 331-334, doi: 10.23919/ispsd.2017.7988956. [7] J. C. W. Ng, J. K. O. Sin, and G. Lingpeng, "A Novel Planar Power MOSFET With Laterally Uniform Body and Ion-Implanted JFET Region," IEEE Electron Device Letters, vol. 29, no. 4, pp. 375-377, 2008, doi: 10.1109/led.2008.917818. [8] J. C. W. Ng and J. K. O. Sin, "A Low-Voltage Planar Power MOSFET With a Segmented JFET Region," IEEE Transactions on Electron Devices, vol. 56, no. 8, pp. 1761-1766, 2009, doi: 10.1109/ted.2009.2024105. [9] W. Yu-Sheng and S. Pin, "Sensitivity of Multigate mosfets to Process Variations–-An Assessment Based on Analytical Solutions of 3-D Poisson's Equation," IEEE Transactions on Nanotechnology, vol. 7, no. 3, pp. 299-304, 2008, doi: 10.1109/tnano.2008.917835. [10] R. F. Pierret and G. W. Neudeck, Advanced semiconductor fundamentals. Addison-Wesley Reading, MA, 1987. [11] S. M. Sze, Y. Li, and K. K. Ng, Physics of semiconductor devices. John wiley & sons, 2021. [12] D. A. Neamen, Semiconductor physics and devices: basic principles. McGraw-hill, 2003. [13] C. Zhang, Y. Li, W. Yue, Z. Li, and X. Fu, "A Novel LDMOS with Quadruple RESURF Effect Breaking Silicon Limit," 2019: IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1-3, doi: 10.1109/edssc.2019.8754161. [14] K. Kinoshita, Y. Kawaguchi, and A. Nakagawa, "A new adaptive resurf concept for 20 V LDMOS without breakdown voltage degradation at high current," 1998:IEEE Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs, pp. 65-68, doi: 10.1109/ispsd.1998.702630. [15] G. Wang, B. Lee, N. Wang, K. Ding, and G. Ma, "On-Resistance Improvement Impacted by Trapping Effects in Fin-LDMOS Technology,"2019 : IEEE China Semiconductor Technology International Conference (CSTIC), pp. 1-3, doi: 10.1109/cstic.2019.8755718. [16] Z. Cao, B. Duan, H. Cai, S. Yuan, and Y. Yang, "Theoretical Analyses of Complete 3-D Reduced Surface Field LDMOS With Folded-Substrate Breaking Limit of Superjunction LDMOS," IEEE Transactions on Electron Devices, vol. 63, no. 12, pp. 4865-4872, 2016, doi: 10.1109/ted.2016.2615654. [17] B. Toner et al., "Addressing the challenges of sub-50nm channel LDMOS," 2021 : IEEE 33rd International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 291-294, doi: 10.23919/ispsd50666.2021.9452248. [18] B. Yi, J. Cheng, M. Kong, B. Zhang, and X. B. Chen, "A high-voltage p-LDMOS with enhanced current capability comparable to double RESURF n-LDMOS," 2018: IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 148-151, doi: 10.1109/ispsd.2018.8393624. [19] S. Pendharkar, T. Efland, and C. Y. Tsai, "Analysis of high current breakdown and UIS behavior of resurf LDMOS (RLDMOS) devices," 2002: Inst. Electr. Eng. Japan, pp. 419-422, doi: 10.1109/ispsd.1998.702735. [20] S. R. Marjorie, P. A. Govindacharyulu, and K. L. Kishore, "Studies on the dependence of breakdown voltages LDMOS devices on their structure and doping profiles of LDD regions," 2012: IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics, pp. 42-45, doi: 10.1109/primeasia.2012.6458624. [21] F. Lin et al., "A Study of n-LDMOS Off-state Breakdown Degradation with 0.18μm BCD Technology," 2019: IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 1-4, doi: 10.1109/ipfa47161.2019.8984858. [22] J. F. Chen, J. R. Lee, K.-M. Wu, T.-Y. Huang, C. M. Liu, and S. L. Hsu, "off-State Avalanche-Breakdown-Induced on-Resistance Degradation in Lateral DMOS Transistors," IEEE Electron Device Letters, vol. 28, no. 11, pp. 1033-1035, 2007, doi: 10.1109/led.2007.907416. [23] A. Arvanitopoulos, N. Lophitis, K. N. Gyftakis, S. Perkins, and M. Antoniou, "Validated physical models and parameters of bulk 3C–SiC aiming for credible technology computer aided design (TCAD) simulation," Semiconductor Science and Technology, vol. 32, no. 10, p. 104009, 2017. [24] E. Buturla, "The use of TCAD in semiconductor technology development," in Proceedings of the IEEE 1991 Custom Integrated Circuits Conference, 1991: IEEE, pp. 23.1/1-23.1/7. [25] Y.-T. Wu et al., "Simulation-Based Study of Hybrid Fin/Planar LDMOS Design for FinFET-Based System-on-Chip Technology," IEEE Transactions on Electron Devices, vol. 64, no. 10, pp. 4193-4199, 2017, doi: 10.1109/ted.2017.2736442. [26] J. Wei et al., "Analyses and Experiments of Ultralow Specific On-Resistance LDMOS With Integrated Diodes," IEEE Journal of the Electron Devices Society, vol. 9, pp. 1161-1165, 2021, doi: 10.1109/jeds.2021.3114738. [27] N. Klein, S. Levin, G. Fleishon, S. Levy, A. Eyal, and S. Shapira, "Device design tradeoffs for 55v ldmos driver embedded in 0.18 micron platform," 2008: IEEE 25th Convention of Electrical and Electronics Engineers in Israel, pp. 736-740, doi: 10.1109/eeei.2008.4736631. [28] A. Saadat, P. B. Vyas, M. L. V. D. Put, M. V. Fischetti, H. Edwards, and W. G. Vandenberghe, "Channel Length Scaling Limit for LDMOS Field-Effect Transistors: Semi-classical and Quantum Analysis," 2020: IEEE 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 443-446, doi: 10.1109/ispsd46842.2020.9170157. [29] B. Yi, M. Kong, and J. Cheng, "Simulation Study of a p-LDMOS With Double Electron Paths to Enhance Current Capability," IEEE Electron Device Letters, vol. 39, no. 11, pp. 1700-1703, 2018, doi: 10.1109/led.2018.2870582. [30] B. Duan, S. Yuan, Z. Cao, and Y. Yang, "New Superjunction LDMOS With the Complete Charge Compensation by the Electric Field Modulation," IEEE Electron Device Letters, vol. 35, no. 11, pp. 1115-1117, 2014, doi: 10.1109/led.2014.2359293.
|