跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/23 17:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳耕穎
研究生(外文):Geng-Ying Chen
論文名稱:分佈式光纖震動感測距離之提升及其窄線寬光源之改良
論文名稱(外文):Distance Enhancement of Distributed Optical Fiber Vibration Sensing and the Improvement in its Narrow Linewidth Light Source
指導教授:廖顯奎
指導教授(外文):Shien-Kuei Liaw
口試委員:李三良李伯亨楊雅梅
口試委員(外文):San-Liang LeeBo-heng LeeYa-mei Yang
口試日期:2022-07-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:72
中文關鍵詞:光纖雷射線寬震動感測φ-OTDR系統脈衝重複率空間解析度
外文關鍵詞:Fiber laserLinewidthVibration sensingφ-OTDR systemPulse repetition rateSpatial resolution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:57
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文有包含自製窄線寬光纖雷射的增進,與φ-OTDR系統的距離延長兩個部分,其中分別介紹了窄線寬光纖雷射與φ-OTDR系統架構的建置與原理的介紹,提及內部元件的介紹與該元件在架構中的作用,並展示最終研究成果。自製窄線寬光纖雷射的部份有功率上的提升與線寬的進一步縮小,提高雷射穩定度,並嘗試使用自製窄線寬光纖雷射結合φ-OTDR系統進行長距離震動感測。其中的雷射功率的增進,從去年成果2.816mW提升至56.3mW,增進了約20倍功率,線寬的部分從去年成果4.176kHz縮窄至1.335kHz,穩定性的部分也有一定程度的提升。
φ-OTDR系統的部分為,將距離從4.6km感測距離延長至10.1km,改良架構的建製與脈衝重複率參數的設定,調控架構內的功率,使φ-OTDR系統成功定位到10.1km距離的模擬震動源位置,並且擁有10公尺的空間解析度與4.9dB的SNR。用Matlab對擷取之訊號進行差分與移動平均的訊號處理運算,顯示出擾動源的準確位置。
最後使用自製窄線寬光纖雷射取代φ-OTDR系統中的商用窄線寬光纖雷射進行測試。測試結果成功觀察到4.6km的待測光纖距離,但目前仍無法確定擾動源的位置,透過訊號處理無法濾除雜訊。推斷此結果為光源的穩定性導致,只要更進一步穩定雷射,即可成功使用自製窄線寬雷射進行φ-OTDR系統感測。
This paper aims to investigate the enhancement of narrow-width optical fiber laser and extension of the φ-OTDR system architecture in long-range vibration sensing experiment. We separately take a deep look into the internal components of the framework and their roles in the architecture. The selected narrow-width optical fiber laser in our experiment has increased in the power and further reduced the line width for the purpose of improving the laser stability. Comparing to former related research, the research result shows that the laser power has increased from 2.816mW to 56.3mW, an increase of nearly 20 times the power, and the line width has been reduced from 4.176kHz to 1.335kHz, which provides sufficient evidence to prove the enhancement in stability.
For the experimental factors in φ-OTDR system, the effective sensor distance is extended from 4.6 km to 10.1 km. Also, the construction of the framework and the impulse duplicated rate setting is optimized for strictly controlling the power rate of the framework, which make the φ-OTDR system sensor the simulating source of vibration 10.1 km away with 10 meters of spatial resolution and 4.9 dB SNR. For determining the accurate position of source of vibration, we apply difference and moving average for signal processing.
Lastly, we apply the selected narrow-width optical fiber laser as alternatives of commercial narrow-width optical fiber laser. The result indicates a successful observation of pre-test optical fiber distance at 4.6km, while the accurate vibration position remains unknown, and the signal processing is unable to effectively filter out the noise signal. As a result, we conclude the core reason causing this phenomenon depends on the stability of the light source. Further speaking, with a stabler source of laser, the φ-OTDR system sensor with selected narrow-width optical fiber laser can be conduct successfully.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1前言 1
1.2研究動機 2
1.3論文架構 3
第二章 光纖雷射與φ-OTDR原理介紹 4
2.1光纖雷射原理 4
2.1.1 稀土元素光纖雷射種類 4
2.1.2 摻鉺光纖雷射原理 6
2.1.3 光學散射原理 8
2.2窄線寬光纖雷射原理 11
2.2.1 窄線寬光纖雷射線寬壓縮原理 11
2.2.2 雷射線寬的定義 13
2.3 φ-OTDR基本原理 14
2.3.1空間解析度 16
2.3.2脈衝重複率 16
2.3.3訊雜比 17
2.3.4感測距離 18
2.3.5參數整理 18
2.4文獻探討 19
2.4.1窄線寬雷射 19
2.4.2窄線寬雷射結合φ-OTDR系統 22
第三章 窄線寬光纖雷射的研製與開發 25
3.1光纖雷射線寬量測方法 25
3.1.1外差檢測 25
3.1.2同差檢測 26
3.1.3延遲自外差檢測 27
3.2窄線寬光纖雷射架構搭建 28
3.2.1半導體雷射參數 28
3.2.2窄線寬光纖雷射的架設 29
3.2.3窄線寬光纖雷的擾動屏蔽 30
3.2.4窄線寬光纖雷射量測 32
3.3實驗結果與分析 32
3.3.1 窄線寬光纖雷射量測結果 32
3.3.2 窄線寬光纖雷射數據評估 34
3.3.3 窄線寬光纖雷射屏蔽效果測試 37
3.3.4 窄線寬光纖雷射穩定性測試 38
第四章 φ-OTDR架構的建置與量測結果 40
4.1 φ-OTDR架構的儀器與元件介紹 40
4.1.1光被動元件 41
4.1.2光主動元件 43
4.1.3儀器設備 47
4.2訊號截取與處理 48
4.3φ-OTDR感測實驗架設 50
4.3.1φ-OTDR實驗架構 50
4.3.2探測光訊號 51
4.3.3散射光處理 53
第五章 商用與自製窄線寬光纖雷射於φ-OTDR實驗結果之比較與討論 55
5.1商用窄線寬光纖雷射於φ-OTDR之實驗結果 55
5.1.1 4.6km模擬震動實驗 55
5.1.2 10.1km模擬震動實驗 57
5.1.3實驗結果與分析 58
5.2自製窄線寬光纖雷射於φ-OTDR之實驗結果 59
5.2.1 4.6km模擬震動實驗 60
5.2.2實驗結果與分析 62
第六章 結論與未來展望 65
6.1結論 65
6.2未來展望 66
參考文獻 67
[1] Y. Chen, Q. Han, W. Yan, Y. Yao and T. Liu, “Magnetic field and temperature sensing based on a macro-bending fiber structure and an FBG”, IEEE Sens. J., vol. 16, no. 21, pp. 7659-7662, Nov. 2016.
[2] X. Jin, C. Sun, S. Duan, W. Liu, G. Li, S. Zhang, X. Chen, L. Zhao, C. Lu, X. Yang, T. Geng, W. Sun and L. Yuan, “High strain sensitivity temperature sensor based on a secondary modulated tapered long period fiber grating”, IEEE Photonics J., vol. 11, no. 1, pp. 1-8, Feb. 2019.
[3] L. Jin, Y. N. Tan, Z. Quan, M. P. Li and B. O. Guan, “Strain-insensitive temperature sensing with a dual polarization fiber grating laser” Opt. Express, vol. 20, Issue 6, pp. 6021-6028, Mar. 2012.
[4] A. Masoudi, M. Belal and T. P. Newson, “A distributed optical fiber dynamic strain sensor based on phase-OTDR” Meas. Sci. Technol, vol. 24, Issue 8, no. 085204, Aug. 2013.
[5] X. Liu, B. Q. Jin, Q. Bai, Y. Wang, D. Wang and Y.C. Wang, “Distributed fiber optic sensors for vibration detection”, Sensors, vol. 16, Issue 8, no. 1164, Aug. 2016.
[6] G. Keiser. (2010). Optical Fiber Communications, Fourth Edition. New York. USA.
[7] C. F. Bohren, D. R. Huffman (1984). Absorption and Scattering of Light by Small Particles. Weinheim. DE.
[8] A. W. Brown, B. G. Colpitts and K. Brown, “Distributed sensor based on dark-pulse Brillouin scattering”, IEEE Photon. Technol. Lett., vol. 17, Issue 7, pp. 1501-1503, Jul. 2005.
[9] A. Coscetta, A. Minardo and L. Zeni, “Distributed dynamic strain sensing based on Brillouin scattering in optical fibers” Sensors, vol. 20, Issue 19, no. 5629, Oct. 2020.
[10] T. Zhu, B. M. Zhang, L. L. Shi, S. H. Huang, M. Deng, J. G. Liu and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering” Opt. Express, vol. 24, Issue 2, pp. 1324-1330, Jan. 2016.
[11] T. Zhu, F. Y. Chen, S. H. Huang and X. Y. Bao, “An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber” Laser Phys Lett, vol. 10, Issue 5, no. 055110, May 2013.
[12] T. Zhu, S. H. Huang, L. L. Shi, W. Huang, M. Liu and K. S. Chiang, “Rayleigh backscattering: a method to highly compress laser linewidth” Chinese Sci Bull., vol. 59, Issue 33, pp. 4631-4636, Nov. 2014.
[13] 王子, “運用相位靈敏光時域反射儀於光纖震動感測的設計與實現”, 台灣科技大學電子工程研究所碩士論文, 2022年4月。
[14] N. Guo, L. Wang, J. Wang, C. Jin, H. Y. Tam, A. Zhang and C. Lu, “Bi-directional Billouin optical time domain analyzer system for long range distributed sensing,” Sensors, vol. 16, no. 12, p. 2156, Dec. 2016.
[15] K. M. McCary, B. A. Wilson, A. Birri and T. E. Blue, “Response of distributed fiber optic temperature sensors to high-temperature step transients”, IEEE Sens. J., vol. 18, no. 21, pp. 8755-8761, Nov. 2018.
[16] H. Tsuda, “Fiber Bragg grating vibration-sensing system, insensitive to Bragg wavelength and employing fiber ring laser” Opt. Lett., vol. 35, Issue 14, pp. 2349-2351, Jul. 2010.
[17] L. S. Yan, A. Yi, W. Pan and B. Luo, “A simple demodulation method for FBG temperature sensors using a narrow band wavelength tunable DFB laser”, IEEE Photon. Technol. Lett., vol. 22, no. 18, pp. 1391-1393, Sep. 2010.
[18] T. Zhu, X. H. Xiao, Q. He and D. M. Diao, “Enhancement of SNR and spatial resolution in phi-OTDR system by using two-dimensional edge detection method” IEEE/OSA J. Lightw. Technol., vol. 31, Issue 17, pp. 2851-2856, Sep. 2013.
[19] F. Peng, H. Wu, X. H. Jia, Y. J. Rao, Z. N. Wang and Z. P. Peng, "Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines, " Opt. Express, Vol. 22, Issue 11, pp. 13804-13810, Jun. 2014.
[20] A.E. Alekseev, B. G. Gorshkov and V. T. Potapov, “Fidelity of the dual-pulse phase-OTDR response to spatially distributed external perturbation” Laser Phys, vol. 29, Issue 5, no. 055106, May 2019.
[21] D. Iida, K. Toge and T. Manabe, “Distributed measurement of acoustic vibration location with frequency multiplexed phase-OTDR” Opt. Fiber Technol., vol. 36, pp. 19-25, Jul. 2017.
[22] Y. Chen, B. M. Mao, B. Zhou, C. J. Guo and Z. Q. Lin, “Improving the SNR of the phase-OTDR by controlling the carrier in the SOA” J Mod Opt, vol. 67, Issue14, pp. 1241-1246, Aug. 2020.
[23] Q. He, Z. Zeng, Q. G. Zhao, X. J. Shang and T. Li, “SNR improvement of vibration sensing in a conventional phase-OTDR by k-parameter statistical analysis” Opt. Commun., vol. 509, no. 127789, Apr. 2022.
[24] S. H. Huang, T. Zhu, G. L. Yin, T. Y. Lan, L. G. Huang, F. H. Li, Y. Z. Bai, Y. Z. Bai, D. R. Qu, X. B. Huang and F. Qiu, “Tens of hertz narrow-linewidth laser based on stimulated Brillouin and Rayleigh scattering” Opt. Lett., vol. 42, Issue 24, pp. 5286-5289, Dec. 2017.
[25] J. Li, Z. T. Zhang, J. L. Gan, Z. S. Zhang, X. B. Heng, K. J. Zhou, H. Zhao, S. H. Xu and Z. M. Yang, “Influence of laser linewidth on phase-OTDR system based on heterodyne detection” IEEE/OSA J. Lightw. Technol., vol. 37, Issue 11, pp. 2641-2647, Jun. 2019.
[26] S. H. Huang, T. Zhu, Z. Z. Cao, M. Liu, M. Deng, J.G. Liu and X. Li, “Laser linewidth measurement based on amplitude difference comparison of coherent envelope” IEEE Photon. Technol. Lett., vol. 28, Issue 7, pp. 759-762, Apr. 2016.
[27] S. H. Huang, T. Zhu, M. Liu and W. Huang, “Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope” Sci. Rep., vol. 7, no. 41988, Feb. 2017.
[28] 王理恩, “基於背向雷利散射之窄線寬光纖雷射研製及其應用分析”, 台灣科技大學電子工程研究所碩士論文, 2021年7月
[29] Max Born and Emil Wolf. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th. Cambridge. UK.
[30] K. J. Zhou, Q. L. Zhao, X. Huang, C. S. Yang, C. Li, E. B. Zhou, X. G. Xu, K. K. Y. Wong, H. H. Cheng, J. L. Gan, Z. M. Feng, M.Y. Peng, Z. M. Yang and S. H. Xu, “kHz-order linewidth controllable 1550 nm single-frequency fiber laser for coherent optical communication” Opt. Express, vol. 25, Issue 17, pp. 19752-19759, Aug. 2017.
[31] R. K. Kim, S. Chu and Y. G. Han, “Stable and widely tunable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for optical beat frequency generation” IEEE Photon. Technol. Lett., vol. 24, Issue 6, pp. 521-523, Mar. 2012.
[32] P. Zhang, T. S. Wang, Q. S. Jia, H. W. Sun, K. Y. Dong, X. Liu, M. Kong and H. L. Jiang, “Frequency switched narrow linewidth microwave signal photonic generation based on a double-Brillouin-frequency spaced fiber laser” Appl. Opt., vol. 53, Issue 11, pp. 2352-2356, Apr. 2014.
[33] K. Shimizu, T. Horiguchi and Y. Koyamada, “Characteristics and reduction of coherent fading noise in Rayleigh backscattering measurement for optical fibers and components” IEEE/OSA J. Lightw. Technol., vol. 10, Issue 7, pp. 982-988, Jul. 1992.
[34] A.S. AlOmar, “Line width at half maximum of the Voigt profile in terms of Gaussian and Lorentzian widths: Normalization, asymptotic expansion, and Chebyshev approximation” J. Appl. Opt., vol. 203, no. 163919, Feb. 2020.
[35] F. Jiang, H. L. Li, Z. H. Zhang, Z. W. Hu, Y. Z. Hu, Y. X. Zhang and X. P. Zhang, “Under sampling for fiber distributed acoustic sensing based on coherent phase-OTDR” Opt. Lett., vol. 44, Issue 4, pp. 911-914, Feb. 2019.
[36] H. Izumita, Y. Koyamada, S. Furukawa and I. Sankawa, “Stochastic amplitude fluctuation in coherent OTDR and a new technique for its reduction by stimulating synchronous optical frequency hopping” IEEE/OSA J. Lightw. Technol., vol. 15, Issue 2, pp. 267-278, Feb. 1997.
[37] Z. G. Qin, T. Zhu, L. Chen and X. Y. Bao, “High sensitivity distributed vibration sensor based on polarization-maintaining configurations of phase-OTDR”, IEEE Photon. Technol. Lett., vol. 23, Issue 15, pp. 1091-1093, Aug. 2011.
[38] A. E. Alekseev, B. G. Gorshkov, V. T. Potapov, M. A. Taranov and D. E. Simikino, “Dual-pulse phase-OTDR response to propagating longitudinal disturbance”, Laser science, vol. 30, Issue3, no. 035107, Mar. 2020.
[39] B. Vanus, C. Baker, L. Chen and X. Y. Bao, “All-optical pulse peak power stabilization and its impact in phase-OTDR vibration detection” OSA Continuum, vol. 4, Issue 5, pp. 1430-1436, May 2020.
[40] Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification” Opt. Lett. vol. 39, Issue 20, pp. 5866-5869, Oct. 2014.
[41] 許安鋒, “同調檢測之相位靈敏光時域反射儀研究與設計”, 台灣科技大學電子工程研究所碩士論文, 2021年1月。
[42] W. Tomboza, S. Guerrier, E. Awwad and C. Dorize, “High sensitivity differential phase OTDR for acoustic signals detection” IEEE Photon. Technol. Lett., Vol. 33, Issue13, pp. 645-648, Jul. 2021.
[43] N. Z. Muhammad, J. L. Jiang and S. A. Rizvi, “Reflectometric and interferometric fiber optic sensor's principles and applications” Front. Optoelectron., vol. 12, Issue 2, pp. 215-226, Jun. 2019.
[44] H. Izumita, S. i. Furukawa, Y. Koyamada and I. Sankawa, “Fading noise reduction in coherent OTDR” IEEE Photon. Technol. Lett., vol. 4, Issue 2, pp. 201-203, Feb. 1992.
[45] Q. Zhang, T. Zhu, Y. S. Hou and K. S. Chiang, “All-fiber vibration sensor based on a Fabry-Perot interferometer and a microstructure beam” J Opt Soc Am B, vol. 30, Issue 5, pp. 1211-1215, May 2013.
[46] Y. L. Lu, T. Zhu, L.A. Chen and X. Y. Bao, “Distributed vibration sensor based on coherent detection of phase-OTDR” IEEE/OSA J. Lightw. Technol., vol. 28, Issue 22, pp. 3243-3249, Nov. 2010.
電子全文 電子全文(網際網路公開日期:20270811)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top