|
[1] A. Qazi et al., "Towards sustainable energy: a systematic review of renewable energy sources, technologies, and public opinions," IEEE access, vol. 7, pp. 63837-63851, 2019. [2] F. Rizzi, N. J. van Eck, and M. J. R. E. Frey, "The production of scientific knowledge on renewable energies: Worldwide trends, dynamics and challenges and implications for management," Renewable Energy, vol. 62, pp. 657-671, 2014. [3] H. Sadeghi, M. Rashidinejad, M. Moeini-Aghtaie, and A. J. A. T. E. Abdollahi, "The energy hub: An extensive survey on the state-of-the-art," Applied Thermal Engineering, vol. 161, p. 114071, 2019. [4] H. H. Chen, A. H. J. R. Lee, and S. E. Reviews, "Comprehensive overview of renewable energy development in Taiwan," Renewable Sustainable Energy Reviews, vol. 37, pp. 215-228, 2014. [5] M. S. Alam, F. S. Al-Ismail, A. Salem, and M. A. J. I. A. Abido, "High-level penetration of renewable energy sources into grid utility: Challenges and solutions," IEEE Access, vol. 8, pp. 190277-190299, 2020. [6] K. P. Kumar, B. J. R. Saravanan, and S. E. Reviews, "Recent techniques to model uncertainties in power generation from renewable energy sources and loads in microgrids–a review," Renewable Sustainable Energy Reviews, vol. 71, pp. 348-358, 2017. [7] M. H. Athari and Z. Wang, "Modeling the uncertainties in renewable generation and smart grid loads for the study of the grid vulnerability," in 2016 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), pp. 1-5: IEEE, 2016. [8] M. Dreidy, H. Mokhlis, S. J. R. Mekhilef, and s. e. reviews, "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable sustainable energy reviews, vol. 69, pp. 144-155, 2017. [9] S. Yu, L. Zhang, H. H.-C. Lu, T. Fernando, and K. P. J. I. T. o. I. I. Wong, "A DSE-based power system frequency restoration strategy for PV-integrated power systems considering solar irradiance variations," IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp. 2511-2518, 2017. [10] S. C. Johnson, D. J. Papageorgiou, D. S. Mallapragada, T. A. Deetjen, J. D. Rhodes, and M. E. J. E. Webber, "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, vol. 180, pp. 258-271, 2019. [11] A. Etxegarai, P. Eguia, E. Torres, A. Iturregi, V. J. R. Valverde, and S. E. Reviews, "Review of grid connection requirements for generation assets in weak power grids," Renewable Sustainable Energy Reviews, vol. 41, pp. 1501-1514, 2015. [12] G. Lammert, T. Heß, M. Schmidt, P. Schegner, and M. Braun, "Dynamic grid support in low voltage grids—fault ride-through and reactive power/voltage support during grid disturbances," in 2014 Power Systems Computation Conference, pp. 1-7: IEEE, 2014. [13] S. Zhu, D. Piper, D. Ramasubramanian, R. Quint, A. Isaacs, and R. Bauer, "Modeling inverter-based resources in stability studies," in 2018 IEEE Power & Energy Society General Meeting (PESGM), pp. 1-5: IEEE, 2018. [14] V. Ćuk et al., "Considerations on the modeling of photovoltaic systems for grid impact studies," in 1st International Workshop on the Integration of Solar Power into Power Systems, 2011. [15] S. I. Nanou and S. A. J. E. P. S. R. Papathanassiou, "Modeling of a PV system with grid code compatibility," Electric Power Systems Research, vol. 116, pp. 301-310, 2014. [16] J. Mahseredjian, V. Dinavahi, and J. A. J. I. T. o. P. D. Martinez, "Simulation tools for electromagnetic transients in power systems: Overview and challenges," IEEE Transactions on Power Delivery, vol. 24, no. 3, pp. 1657-1669, 2009. [17] A. Hariri and M. O. J. I. T. o. S. E. Faruque, "A hybrid simulation tool for the study of PV integration impacts on distribution networks," IEEE Transactions on Sustainable Energy, vol. 8, no. 2, pp. 648-657, 2016. [18] Generic Solar Photovoltaic System Dynamic Simulation Model Specification [Online]. Available: https://www.powerworld.com/files/WECC-Solar-PV-Dynamic-Model-Specification-September-2012.pdf [19] P. Sørensen, B. Andresen, J. Fortmann, and P. Pourbeik, "Modular structure of wind turbine models in IEC 61400-27-1," in 2013 IEEE Power & Energy Society General Meeting, pp. 1-5: IEEE, 2013. [20] Model User Guide for Generic Renewable Energy System Models [Online]. Available: https://www.epri.com/research/products/3002014083 [21] Ö. Göksu, P. Sørensen, A. Morales, S. Weigel, J. Fortmann, and P. Pourbeik, "Compatibility of IEC 61400-27-1 and WECC 2nd generation wind turbine models," in Proceedings of the 15th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Vienna, Austria, pp. 15-17, 2016. [22] P. Eguia, A. Etxegarai, E. Torres, J. San Martin, and I. Albizu, "Modeling and validation of photovoltaic plants using generic dynamic models," in 2015 International Conference on Clean Electrical Power (ICCEP),pp. 78-84: IEEE, 2015. [23] P. Pourbeik, N. Etzel, and S. J. I. T. o. S. E. Wang, "Model validation of large wind power plants through field testing," IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1212-1219, 2017. [24] R. Machlev, Z. Batushansky, S. Soni, V. Chadliev, J. Belikov, and Y. J. E. Levron, "Verification of utility-scale solar photovoltaic plant models for dynamic studies of transmission networks," Energies, vol. 13, no. 12, p. 3191, 2020. [25] G. Lammert, D. Premm, L. D. P. Ospina, J. C. Boemer, M. Braun, and T. J. I. T. o. E. C. Van Cutsem, "Control of photovoltaic systems for enhanced short-term voltage stability and recovery," IEEE Transactions on Energy Conversion, vol. 34, no. 1, pp. 243-254, 2018. [26] B. Saleh et al., "Design of PID controller with grid connected hybrid renewable energy system using optimization algorithms," Journal of Electrical Engineering Technology, vol. 16, no. 6, pp. 3219-3233, 2021. [27] T. Fetouh, M. S. J. I. G. Zaky, Transmission, and Distribution, "New approach to design SVC-based stabiliser using genetic algorithm and rough set theory," IET Generation, Transmission Distribution, vol. 11, no. 2, pp. 372-382, 2017. [28] G. Shahgholian, A. J. I. G. Movahedi, Transmission, and Distribution, "Power system stabiliser and flexible alternating current transmission systems controller coordinated design using adaptive velocity update relaxation particle swarm optimisation algorithm in multi-machine power system," IET Generation, Transmission Distribution, vol. 10, no. 8, pp. 1860-1868, 2016. [29] S. Soni, Solar PV plant model validation for grid integration studies. Arizona state university, 2014. [30] Y. Chi, Y. J. I. G. Xu, Transmission, and Distribution, "Multi-objective robust tuning of STATCOM controller parameters for stability enhancement of stochastic wind-penetrated power systems," IET Generation, Transmission Distribution, vol. 14, no. 21, pp. 4805-4814, 2020. [31] J. C. Helton, F. J. J. R. E. Davis, and S. Safety, "Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems," Reliability Engineering, vol. 81, no. 1, pp. 23-69, 2003. [32] N. C. Yang and M. D. Le, "Multi-objective bat algorithm with time-varying inertia weights for optimal design of passive power filters set," Iet Generation Transmission & Distribution, vol. 9, no. 7, pp. 644-654, Apr 2015. [33] N. C. Yang and M. D. Le, "Optimal design of passive power filters based on multi-objective bat algorithm and pareto front," Applied Soft Computing, vol. 35, pp. 257-266, Oct 2015. [34] M. Reyes-Sierra and C. C. J. I. j. o. c. i. r. Coello, "Multi-objective particle swarm optimizers: A survey of the state-of-the-art," vol. 2, no. 3, pp. 287-308, 2006. [35] W.-Y. Chiu, G. G. Yen, and T.-K. J. I. T. o. E. C. Juan, "Minimum manhattan distance approach to multiple criteria decision making in multiobjective optimization problems," vol. 20, no. 6, pp. 972-985, 2016. [36] F. Jiménez-Buendía, R. Villena-Ruiz, A. Honrubia-Escribano, Á. Molina-García, and E. Gómez-Lázaro, "Submission of a WECC DFIG Wind Turbine Model to Spanish Operation Procedure 12.3," vol. 12, no. 19, p. 3749, 2019.
|