# 臺灣博碩士論文加值系統

(44.201.72.250) 您好！臺灣時間：2023/09/24 05:03

:::

### 詳目顯示

:

• 被引用:0
• 點閱:45
• 評分:
• 下載:0
• 書目收藏:0
 本研究旨在設計出具有足夠緩衝性能與高儲能之緩衝模組的剛性數值模型，期望能減緩退化性膝關節炎患者在行走時的疼痛，同時能提供其在推蹬步態中的回彈助力，彌補其肌力的不足。首先藉由能量守恆定理，計算使用者在從事各種活動及在限制條件下所產生的最大靜態力量，將其相對應之儲能定義為一個完全儲能指標，並以最大儲能作為設計剛性曲線之目標，然後將剛性曲線代入人體數學模型，模擬地面反作用力(GRF)，最後透過肌肉骨骼軟體OpenSim模擬各種GRF下所產生之膝關節接觸力(KCF)，由此判斷各種剛性曲線之緩衝性能是否良好。本研究設計之緩衝模組之剛性會隨著變形量作非線性的變化。其剛性在變形初期較軟，中期會增強至最大，及至後期又會稍稍減緩，故能在有限的變形空間下同時達到足夠的緩衝與較多的儲能。研究結果顯示，當最大變形量δmax=35 mm時，在必須先具備足夠之緩衝性能的先決條件下，剛性曲線L1-1證明可讓走路之儲能率達到114 %；同樣的，當最大變形量δmax=50 mm時，剛性曲線M2-4也顯示可讓跑步之儲能率達到102 %。這樣的結果，足以引導未來的設計者有明確的依據去設法出具有高儲能的緩衝模組。若限定δmax=35 mm的鞋底高度，卻仍欲滿足跑步時應達到的足夠緩衝性能，則僅能令剛性由初始剛性k0(=50 N/mm)隨變形量逐漸增強至最終的剛性kf，最終的kf大致會落在310 ~390 N/mm之間。而儲能率也僅能達到約65%。
 The purpose of this study is to design the stiffness of a numerical cushioning module with sufficient cushioning performance and high capacity to store energy, which is expected to alleviate the pain of patients with degenerative knee arthritis during walking, and at the same time to provide extra rebound force to help their weak muscles.Firstly, according to the law of energy conservation, equivalent maximum static force needs to be obtained for the design of the cushioning module. The first goal that must be achieved is a sufficient cushioning performance, which is determined by the criteria set for the knee joint contact force (KCF). Then the best stiffness curve for a maximum energy-storage under a maximum deformation constraint will be obtained through a series of repetitive process, including the use of a musculoskeletal software named OpenSim.The stiffness of the cushioning module designed has a nonlinear feature with respect to its deformation. The stiffness is soft in the early stage of deformation, increasing to a maximum in the middle, and decreasing slightly to the end in order to achieve both sufficient cushioning and higher stored energy under a limited deformation space.Research results showed that the stiffness curve L1-1 could reach a storage rate of 114 % for walking at a maximum deformation of 35 mm. Similarly, the stiffness curve M2-4 had a storage rate of 102 % for running at a maximum deformation of 50 mm. Both stiffness curves satisfied the sufficient cushioning requirements in the first place. Future engineers can thus be guided to better design a cushioning module with high capacity of energy storage based on these findings.If the sufficient cushioning performance is required for running at a maximum deformation of only 35 mm, then the stiffness must increase all the way from its initial value of 50 N/mm to its final value of around 350 N/mm. However, the energy storage rate would drop to around 65 % in this situation.
 目錄:摘要................................................................................IAbstract...........................................................................II致謝...............................................................................IV目錄................................................................................V圖索引..............................................................................X表索引............................................................................XXV符號索引........................................................................XXXIV第一章 緒論.........................................................................11.1前言.........................................................................11.2研究動機與研究目的............................................................11.3文獻回顧.....................................................................21.4本文架構....................................................................22第二章 剛性曲線之設計..............................................................242.1 步態理論...................................................................242.1.1 步態週期.............................................................242.1.2 走路、跑步之地面垂直反作用力...........................................272.2 設計目標與核心技術..........................................................372.3 設計方法之探討..............................................................382.3.1 線性無預壓............................................................392.3.2 線性預壓..............................................................502.3.3 非線性無預壓..........................................................622.3.4 非線性預壓............................................................812.4 非線性剛性曲線之設計原理與探討................................................922.5 小結.......................................................................101第三章 地面反作用力模擬與應用之探討..................................................1023.1 實測與模擬地面反作用力之探討.................................................1023.2 以六體模型模擬各剛性曲線之緩衝性能............................................1223.2.1 各種模組參數對地面反作用力之影響.......................................1223.2.2 以走路為例，使用六體模型評估完全儲能時各種δmax與k0下之各剛性曲線的緩衝性能.1333.2.3 以跑步為例，使用六體模型評估完全儲能時各種δmax與k0下之各剛性曲線的緩衝性能.1413.2.4 使用六體模型評估在限制力量下設計之剛性曲線產生的緩衝性能-跑步.............1473.2.5 使用六體模型評估在限制力量下設計之剛性曲線產生的緩衝性能-走路.............1703.3 現有SC模組技術對灌籃之可行性評估.............................................1823.3.1 穿戴現有SC模組的彈跳成效..............................................1833.3.2 穿戴未來SB模組的彈跳成效..............................................1943.4 小結......................................................................204第四章 膝關節接觸力之模擬與探討.....................................................2074.1 OpenSim簡介..............................................................2074.2 使用OpenSim模擬膝關節之接觸力(KCF).........................................2134.2.1建立膝關節傷害標準.....................................................2134.2.2使用OpenSim模擬實測GRF產生之KCF........................................2154.2.3小結..................................................................2284.3 使用OpenSim驗證各種剛性曲線之緩衝性能.......................................2304.3.1 以走路為例，使用OpenSim評估完全儲能時各種δmax與k0下之剛性曲線的緩衝性能..2314.3.2 以跑步為例，使用OpenSim評估完全儲能時各種δmax與k0下之剛性曲線的緩衝性能..2374.3.3 以跑步為例，使用OpenSim評估在加上限制力量下設計之剛性曲線產生的最大儲能...2444.3.4 以走路為例，使用OpenSim評估在加上限制力量下設計之剛性曲線產生的緩衝性能...2714.3.5 以走路為例，如何設計適當的剛性來兼顧緩衝與儲能..........................2824.3.6 以跑步為例，能否設計適當的剛性來兼顧緩衝與儲能..........................2934.3.7 分段剛性曲線之kmax的設計範圍探討......................................3024.4 小結......................................................................312第五章 結論與建議.................................................................3155.1 結論......................................................................3155.2 未來建議..................................................................318參考文獻.........................................................................320附錄A 各種δmax與k0之完全儲能的剛性及力量曲線........................................326附錄B 以走路為例，各種δmax與k0之完全儲能的剛性曲線產生之Fm...........................338附錄C 以跑步為例，各種δmax與k0之完全儲能的剛性曲線產生之Fm...........................350附錄D 以走路為例，各種δmax與k0之完全儲能的剛性曲線產生之KCF..........................362附錄E 以跑步為例，各種δmax與k0之完全儲能的剛性曲線產生之KCF..........................374附錄F 以跑步為例，Pmax=3 BW及各種δmax與k0之最大儲能剛性、力量曲線及其產生的KCF........386附錄G 以走路為例，各種分段剛性與力量曲線及其產生的KCF................................410附錄H 以跑步為例，各種分段剛性與力量曲線及其產生的KCF................................421附錄I x1 與x2對kmax的影響之分析....................................................449附錄J 在kf=k0、kfk0時，x1 、x2與kmax之設計範圍探討..........................456