跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張宏浩
研究生(外文):Hung-Hao Chang
論文名稱:鞋底緩衝模組剛性曲線之緩衝與儲能性能的分析
論文名稱(外文):The Analysis on Cushioning and Energy Storage Performance of Stiffness Curves of Cushioning Module for Footwear
指導教授:徐茂濱徐茂濱引用關係趙振綱
指導教授(外文):Mau-Pin HsuChing-Kong Chao
口試委員:徐茂濱趙振綱曾敏烈許維君
口試委員(外文):Mau-Pin HsuChing-Kong ChaoMing-Lei TsengWei-Chun Hsu
口試日期:2022-01-26
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
中文關鍵詞:緩衝模組剛性曲線地面反作用力膝關節接觸力
外文關鍵詞:Cushioning ModuleStiffness CurveGround Reaction ForceKnee Joint Contact Force
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在設計出具有足夠緩衝性能與高儲能之緩衝模組的剛性數值模型,期望能減緩退化性膝關節炎患者在行走時的疼痛,同時能提供其在推蹬步態中的回彈助力,彌補其肌力的不足。

首先藉由能量守恆定理,計算使用者在從事各種活動及在限制條件下所產生的最大靜態力量,將其相對應之儲能定義為一個完全儲能指標,並以最大儲能作為設計剛性曲線之目標,然後將剛性曲線代入人體數學模型,模擬地面反作用力(GRF),最後透過肌肉骨骼軟體OpenSim模擬各種GRF下所產生之膝關節接觸力(KCF),由此判斷各種剛性曲線之緩衝性能是否良好。

本研究設計之緩衝模組之剛性會隨著變形量作非線性的變化。其剛性在變形初期較軟,中期會增強至最大,及至後期又會稍稍減緩,故能在有限的變形空間下同時達到足夠的緩衝與較多的儲能。

研究結果顯示,當最大變形量δmax=35 mm時,在必須先具備足夠之緩衝性能的先決條件下,剛性曲線L1-1證明可讓走路之儲能率達到114 %;同樣的,當最大變形量δmax=50 mm時,剛性曲線M2-4也顯示可讓跑步之儲能率達到102 %。這樣的結果,足以引導未來的設計者有明確的依據去設法出具有高儲能的緩衝模組。

若限定δmax=35 mm的鞋底高度,卻仍欲滿足跑步時應達到的足夠緩衝性能,則僅能令剛性由初始剛性k0(=50 N/mm)隨變形量逐漸增強至最終的剛性kf,最終的kf大致會落在310 ~390 N/mm之間。而儲能率也僅能達到約65%。
The purpose of this study is to design the stiffness of a numerical cushioning module with sufficient cushioning performance and high capacity to store energy, which is expected to alleviate the pain of patients with degenerative knee arthritis during walking, and at the same time to provide extra rebound force to help their weak muscles.

Firstly, according to the law of energy conservation, equivalent maximum static force needs to be obtained for the design of the cushioning module. The first goal that must be achieved is a sufficient cushioning performance, which is determined by the criteria set for the knee joint contact force (KCF). Then the best stiffness curve for a maximum energy-storage under a maximum deformation constraint will be obtained through a series of repetitive process, including the use of a musculoskeletal software named OpenSim.

The stiffness of the cushioning module designed has a nonlinear feature with respect to its deformation. The stiffness is soft in the early stage of deformation, increasing to a maximum in the middle, and decreasing slightly to the end in order to achieve both sufficient cushioning and higher stored energy under a limited deformation space.

Research results showed that the stiffness curve L1-1 could reach a storage rate of 114 % for walking at a maximum deformation of 35 mm. Similarly, the stiffness curve M2-4 had a storage rate of 102 % for running at a maximum deformation of 50 mm. Both stiffness curves satisfied the sufficient cushioning requirements in the first place. Future engineers can thus be guided to better design a cushioning module with high capacity of energy storage based on these findings.

If the sufficient cushioning performance is required for running at a maximum deformation of only 35 mm, then the stiffness must increase all the way from its initial value of 50 N/mm to its final value of around 350 N/mm. However, the energy storage rate would drop to around 65 % in this situation.
目錄:
摘要................................................................................I
Abstract...........................................................................II
致謝...............................................................................IV
目錄................................................................................V
圖索引..............................................................................X
表索引............................................................................XXV
符號索引........................................................................XXXIV
第一章 緒論.........................................................................1
1.1前言.........................................................................1
1.2研究動機與研究目的............................................................1
1.3文獻回顧.....................................................................2
1.4本文架構....................................................................22
第二章 剛性曲線之設計..............................................................24
2.1 步態理論...................................................................24
2.1.1 步態週期.............................................................24
2.1.2 走路、跑步之地面垂直反作用力...........................................27
2.2 設計目標與核心技術..........................................................37
2.3 設計方法之探討..............................................................38
2.3.1 線性無預壓............................................................39
2.3.2 線性預壓..............................................................50
2.3.3 非線性無預壓..........................................................62
2.3.4 非線性預壓............................................................81
2.4 非線性剛性曲線之設計原理與探討................................................92
2.5 小結.......................................................................101
第三章 地面反作用力模擬與應用之探討..................................................102
3.1 實測與模擬地面反作用力之探討.................................................102
3.2 以六體模型模擬各剛性曲線之緩衝性能............................................122
3.2.1 各種模組參數對地面反作用力之影響.......................................122
3.2.2 以走路為例,使用六體模型評估完全儲能時各種δmax與k0下之各剛性曲線的緩衝性能.133
3.2.3 以跑步為例,使用六體模型評估完全儲能時各種δmax與k0下之各剛性曲線的緩衝性能.141
3.2.4 使用六體模型評估在限制力量下設計之剛性曲線產生的緩衝性能-跑步.............147
3.2.5 使用六體模型評估在限制力量下設計之剛性曲線產生的緩衝性能-走路.............170
3.3 現有SC模組技術對灌籃之可行性評估.............................................182
3.3.1 穿戴現有SC模組的彈跳成效..............................................183
3.3.2 穿戴未來SB模組的彈跳成效..............................................194
3.4 小結......................................................................204
第四章 膝關節接觸力之模擬與探討.....................................................207
4.1 OpenSim簡介..............................................................207
4.2 使用OpenSim模擬膝關節之接觸力(KCF).........................................213
4.2.1建立膝關節傷害標準.....................................................213
4.2.2使用OpenSim模擬實測GRF產生之KCF........................................215
4.2.3小結..................................................................228
4.3 使用OpenSim驗證各種剛性曲線之緩衝性能.......................................230
4.3.1 以走路為例,使用OpenSim評估完全儲能時各種δmax與k0下之剛性曲線的緩衝性能..231
4.3.2 以跑步為例,使用OpenSim評估完全儲能時各種δmax與k0下之剛性曲線的緩衝性能..237
4.3.3 以跑步為例,使用OpenSim評估在加上限制力量下設計之剛性曲線產生的最大儲能...244
4.3.4 以走路為例,使用OpenSim評估在加上限制力量下設計之剛性曲線產生的緩衝性能...271
4.3.5 以走路為例,如何設計適當的剛性來兼顧緩衝與儲能..........................282
4.3.6 以跑步為例,能否設計適當的剛性來兼顧緩衝與儲能..........................293
4.3.7 分段剛性曲線之kmax的設計範圍探討......................................302
4.4 小結......................................................................312
第五章 結論與建議.................................................................315
5.1 結論......................................................................315
5.2 未來建議..................................................................318
參考文獻.........................................................................320
附錄A 各種δmax與k0之完全儲能的剛性及力量曲線........................................326
附錄B 以走路為例,各種δmax與k0之完全儲能的剛性曲線產生之Fm...........................338
附錄C 以跑步為例,各種δmax與k0之完全儲能的剛性曲線產生之Fm...........................350
附錄D 以走路為例,各種δmax與k0之完全儲能的剛性曲線產生之KCF..........................362
附錄E 以跑步為例,各種δmax與k0之完全儲能的剛性曲線產生之KCF..........................374
附錄F 以跑步為例,Pmax=3 BW及各種δmax與k0之最大儲能剛性、力量曲線及其產生的KCF........386
附錄G 以走路為例,各種分段剛性與力量曲線及其產生的KCF................................410
附錄H 以跑步為例,各種分段剛性與力量曲線及其產生的KCF................................421
附錄I x1 與x2對kmax的影響之分析....................................................449
附錄J 在kf=k0、kf<k0、kf>k0時,x1 、x2與kmax之設計範圍探討..........................456
參考文獻:
[1] J. J. Collins, and M. W. Whittle, “Impulsive forces during walking and their clinical implications,” Journal of Clinical Biomechanics, Vol. 4 , No. 3 , pp. 179-187 , 1989.

[2] M. F. Bobbert, H. C. Schamhardt, and B. M. Nigg,“CALCULATI- ON OF VERTICAL GROUND REACTION FORCE ESTIMATES DURING RUNNING FROM POSITIONAL DATA,” Journal of Biomechanics, Vol. 24 , No. 12 , pp. 1095-1105 , 1991.

[3] E.L. Radin, K. H. Yang, C. Riegger, V. L. Kish, and J. J. O'Connor, “Relationship Between Lower Limb Dynamics and Knee Joint Pain ,” Journal of Orthopaedic Research, Vol. 9 , No. 3 , pp. 398-405 , 1991.

[4] M. A. Lafortune, and E. M. Hennig,, “Cushioning properties of footwear during walking : accelerometer and force platform measurements,” Clinical Biomechanics, Vol. 7 , No. 3 , pp. 181-184 , 1992.

[5] Q. H. Ly, A. Alaoui, S. Erlicher, and L. Baly, “Towards a footwear design tool: Influence of shoe midsole properties and ground stiffness on the impact force during running,” Journal of Biomechanics, Vol. 43, No. 2, pp. 310-317 , 2010.

[6] K. M. Clements, Z. C. Bee, G. V. Crossingham, M. A. Adams, and M. Sharif, “How severe must repetitive loading be to kill chondrocytes in articular cartilage,” Osteoarthritis and Cartilage, Vol. 9, No. 5, pp. 499-507 , 2001.

[7] S. J. Crenshaw, F. E. Pollo, and E. F. Calton, “Effects of Lateral-Wedged Insoles on Kinetics at the Knee,” Clinical Orthopaedics and Related Research, No. 375 , pp. 185-192 , 2000.

[8] V. Schwachmeyer, I. Kutzner, J. Bornschein, J. Dymke, and G. Bergmann, “Medial and lateral foot loading and its effect on knee joint loading ,” Clinical Biomechanics, Vol. 30 , No. 8 , pp. 860-866 , 2015.

[9] J. P. Walter, D. D. D'Lima, C. W. Colwell Jr, and B. J. Fregly, “Decreased Knee Adduction Moment Does Not Guarantee Decreased Medial Contact Force during Gait,” Journal of Orthopaedic Research, Vol. 28 , No. 10 , pp. 1348-1354 , 2010.

[10] P. A. Torzilli, R. Grigiene, J. Borrelli, and D. L. Helfet, “Effect of Impact Load on Articular Cartilage : Cell Metabolism and Viability, and Matrix Water Content,” Journal of Biomechanical Engineering, Vol. 121 , No. 5 , pp. 433-441 , 1999.

[11] C. T. Chen, N. Burton-Wurster, G. Lust, R. A. Bank, and J. M. Tekoppele, “Compositional and metabolic changes in damaged cartilage are peak-stress, stress-rate, and loading-duration dependent,” Journal of Orthopaedic Research, Vol. 17, No. 6, pp. 870-879 , 1999.

[12] T. Nagura, H. Matsumoto, Y. Kiriyama, A. Chaudhari, and T. P. Andriacchi, “ Tibiofemoral Joint Contact Force in Deep Knee Flexion and Its Consideration in Knee Osteoarthritis and Joint Replacement,” Journal of Applied Biomechanics, Vol. 22 , No. 4, pp. 305-313 , 2006.

[13] V. Silverwood, M. Blagojevic-Bucknall, C. Jinks, J. Protheroe, and K. P. Jordan, “Current evidence on risk factors for knee osteoarthritis in older adults - a systematic review and meta-analysis,” Journal of Clinical Biomechanics, Vol. 23 , No. 4 , pp. 507-515 , 2015.

[14] E. Radin, I. Paul, and R. Rose, “ROLE OF MECHANICAL FACTORS IN PATHOGENESIS OF PRIMARY OSTEOARTHRITIS,” Journal of the Lancet, Vol. 299 , No. 7749 , pp. 519-522 , 1972.

[15] E. L. Radin, R. B. Orr, J. L. Kelman, I. L. Paul, and R. M. Rose, “EFFECT OF PROLONGED WALKING ON CONCRETE ON THE KNEES OF SHEEP,” Journal of Biomechanics, Vol. 15 , No. 7 , pp. 487-492 , 1982.

[16] T. P. Andriacchi, and A. Mündermann, “The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis,” Current Opinion in Rheumatology, Vol. 18 , No. 5 , pp. 514-518 , 2006.

[17] A. Voloshin, and J. Wosk, “Influence of Artificial Shock Absorbers on Human Gait ,” Clinical Orthopaedics and Related Research, No. 160, pp. 52-56 , 1981.

[18] R. D. Komistek, D. A. Dennis, E. J. Northcut, A. W. Parker, and S. M. Traina, “An In Vivo Analysis of the Effectiveness of the Osteoarthritic Knee Brace During Heel-Strike of Gait ,” Journal of Arthroplasty, Vol. 14, No. 6, pp. 738-742 , 1999.

[19] I. Bosse, K. D. Oberländer, H. H. Savelberg, G. P. Brüggemann, and K. Karamanidis, “Dynamic stability control in younger and older adults during stair descent,” Human Movement Science, Vol. 31 , No. 6 , pp. 1560-1570 , 2012.

[20] K. J. Riess, “Mechanical spring technology improves running economy in endurance runners ,” Journal of Human Sport and Exercise, Vol. 9 , No. 4 , pp. 782-789 , 2014.

[21] K. D. Tung, J. R. Franz, and R. Kram, “A Test of the Metabolic Cost of Cushioning Hypothesis during Unshod and Shod Running ,” Medicine and Science in Sports and Exercise, Vol. 46 , No. 2 , pp. 324-329 , 2014.

[22] A. Donald, and P. T. Neumann, Kinesiology of the Musculoske- letal System, Mosby, St Louis, 2002.

[23] J. Rose, and J. G. Gamble, Human Walking, Lippincott Williams & Wilkins, 2006.

[24] N. Romanov, and K. Brungardt, The Running Revolution How to Run Faster, Farther, and Injury-Free--for Life, A Penguin Random House Ltd, 2014.

[25] J. Richards, Biomechanics in Clinic and Research, Churchill Livingstone, 2008.

[26] J. L. Tanja, K.Janos, and S. Aleksandar, “Biomechanical analysis of walking : Effects of gait velocity and arm swing amplitude,” Periodicum biologorum, Vol. 112, pp. 13-17, 2010.

[27] 徐國峰,跑者都該懂的跑步關鍵數據,初版,臉譜出版社,2016。

[28] 李秉儒,鞋底緩衝模組之設計與分析,國立臺灣科技大學研究所碩士論文,2018。

[29] J. P. Kulmala, J. Avela, K. Pasanen, and J. Parkkari, “Forefoot strikers exhibit lower running-induced knee loading than rearfoot strikers,” Medicine and Science in Sports and Exercise, Vol. 45 , No. 12 , pp. 2306-2313 , 2013.

[30] W. Hoogkamer, S. Kipp, J. H. Frank, E. M. Farina, G. Luo, and R. Kram, “A Comparison of the Energetic Cost of Running in Marathon Racing Shoes,” Sports Medicine, Vol. 48 , No. 4, pp. 1009-1019, 2018.

[31] H. Kang, Y. Li, D. Liu, and C. Yang, “Human Kinematics Modeling and Simulation Based on OpenSim,” 10th International Conference on Control, Automation and Information Sciences, ICCAIS 2021 - Proceedings, pp. 644-649 , 2021.

[32] M. W. Creaby, K. May, and K. L. Bennell, “Insole effects on impact loading during walking,” Ergonomics, Vol. 54, No. 7, pp. 665-671, 2011.

[33] A. Hreljac, R. N. Marshall, and P. A. Hume, “Evaluation of lower extremity overuse injury potential in runners,” Medicine and Science in Sports and Exercise, Vol. 32, No. 9, pp. 1635-1641, 2000.

[34] W. Hoogkamer, S. Kipp, and R. Kram, “The Biomechanics of Competitive Male Runners in Three Marathon Racing Shoes: A Randomized Crossover Study,” Sports Medicine, Vol. 49, No. 1, pp. 133-143, 2019.

[35] A. Alamdari, and V. N. Krovi, “A Review of Computational Musculoskeletal Analysis of Human Lower Extremities,” Mechanical Engineering in Assistive Technologies, pp. 37-73, 2017.

[36] DeMers,走路之輸入數據及操作教學,
https://simtk.org/frs/index.php?group_id=91及https://www. youtube.com/watch?v=ly4rhOOifO0

[37] S. R. Hamner,跑步之輸入數據,
https://simtk.org/projects/runningsim

[38] Y. C. Lin, T. W. Dorn, A. G. Schache, and M. G. Pandy, “Comparison of different methods for estimating muscle forces in human movement,” Journal of Engineering in Medicine, Vol. 226 , No. 2 , pp. 103-112 , 2012.

[39] F. Hakkak , M. Rostami, and M. Parnianpour, “Are tibiofemoral compressive loads transferred only via contact mechanisms?,” Journal of Mechanics in Medicine and Biology, Vol. 12 , No. 4, 2012.

[40] I. A. Anderson, A. A. MacDiarmid, M. L. Harris, R. M. Gillies, R. Phelps, and W. R. Walsh, “A novel method for measuring medial compartment pressures within the knee joint in-vivo,” Journal of Biomechanics, Vol. 36 , No. 9 , pp. 1391-1395 , 2003.

[41] A. D. Kaze, S. Maas, P. J. Arnoux, C. Wolf, and D. Pape, “A finite element model of the lower limb during stance phase of gait cycle including the muscle forces,” BioMed Eng OnLine, Vol. 16 , No. 1 , pp. 138 , 2017.
電子全文 電子全文(網際網路公開日期:20270815)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top