跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:熊思閔
研究生(外文):Sih-Min Hsiung
論文名稱:基於直接量測試驗探討 鉛心橡膠支承墊之尺寸與溫度效應
論文名稱(外文):Experimental study of scale and temperature-rise effects on mechanical behavior of lead-rubber bearings using direct measurement
指導教授:汪向榮汪向榮引用關係
指導教授(外文):Shiang-Jung Wang
口試委員:黃震興黃尹男蕭輔沛游忠翰汪向榮
口試委員(外文):Jenn-Shin HwangYin-Nan HuangFu-Pei HsiaoChung-Han YuShiang-Jung Wang
口試日期:2022-08-09
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:營建工程系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:255
中文關鍵詞:雙軸向動態試驗系統鉛心橡膠支承墊直接量測系統縮尺效應相依性溫度效應
外文關鍵詞:dynamic biaxial testing systemlead-rubber bearingdirect measurementscale effectsimilitude lawtemperature-rise effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為瞭解隔震支承動態受力之真實力學行為,需將其於動態試驗條件下進行分析探討。在試驗系統容量不足之條件下,針對尺寸較大之隔震支承進行性能探討時,常採用縮尺之方式進行試驗。本研究針對鉛心橡膠支承墊探討合適之縮尺試驗方法,規劃以垂直軸壓、平均水平速率、及平均剪應變率作為相依性依據設計對應之縮尺試驗。
本研究採用之試驗設備,為2016年於國家地震工程研究中心臺南實驗室啟用之雙軸向動態試驗系統,此系統可提供之試驗量能,可使本研究之實尺寸及縮尺鉛心橡膠支承墊,能於規劃之動態試驗條件下進行試驗。然經由過往研究得知,雙軸向動態試驗系統於進行動態試驗時具有自身之系統摩擦力及慣性力,其對於試驗結果有著不可忽視的影響。故為提升試驗結果之可信度且使其更為直觀,以鋼構架、預力螺桿、及天然橡膠支承墊設計一直接量測系統,量測結果可排除試驗中產生之系統慣性力與摩擦力,並以有限元素分析軟體檢核其構件強度以確保其容量以及試驗安全性。
經由試驗與分析驗證可知,當以平均水平速率相依性作為設計縮尺試驗之指標,鉛心橡膠支承墊各項力學參數之實際縮放比例與理論值較為相符。此外,亦由本研究之試驗結果,驗證了前人對於鉛心橡膠支承墊之溫度效應模型,並基於力平衡假設,探討了雙軸向動態試驗系統之控制邏輯。
Large-scale multiaxial testing facilities mainly serve to experimentally examine the actual horizontal behavior of full-scale, critical structural members on which a large vertical compressive load is exerted simultaneously, such as columns and seismic isolation bearings. One of such testing facilities in the world is the dynamic biaxial testing system (BATS) in National Center for Research on Earthquake Engineering (NCREE) Tainan laboratory, which began operation in 2016. By using this testing facility, in this study, several full-scale and a scale-down lead-rubber bearings are designed and manufactured, to demonstrate that the dynamic behavior of full-scale rubber bearings can be equivalently presented through testing small-scale ones designed with considering suitable similitude laws. Three similitude laws are adopted, including similar vertical compressive stress, average horizontal rate, and average horizontal shear strain applied to the scale-down bearings to be tested. In addition, the temperature-rise effect during disturbance on the characteristic strength of lead-rubber bearings is experimentally examined, which meanwhile verify the accuracy and conservatism of the previously developed mathematical models. By comparing the experimental measurement with the control algorithms of BATS based on the static and dynamic equilibrium assumptions, the dynamic control performance of vertical hydraulic actuators of BATS is further examined.
To have more reliable and more direct measurement results, i.e., to preclude the system friction and inertia force from the measurement, which is very important especially for testing specimens with low horizontal force resistance (small-scale specimens in general), in this study, a direct force measurement system comprising a steel reaction frame, several natural-rubber bearings, and a steel intermediate plate is designed and fabricated. Mechanically, as for transmitting vertical compressive load, the specimen, intermediate plate, and natural-rubber bearings are connected in series to one another. Furthermore, as for transmitting shear force, the four prestressed rods are connected in parallel to the natural-rubber bearings, and the specimen is connected in series to the parallel combined natural-rubber bearings and prestressed rods. Finite-element analysis is conducted to check in detail the stress and deformation of each component in the direct force measurement system under the considered loading scenarios. The results obtained by the direct force measurement system are compared with those calibrated using the previously empirical calibration approach, to further verify the feasibility of the proposed direct force measurement strategy.
After demonstrating the dynamic control performance of BATS and the feasibility of the direct force measurement, the test results of the full-scale and scale-down lead-rubber bearings are compared and discussed. Through the comparison in terms of hysteresis loops, effective stiffness, equivalent damping ratio, and characteristic strength, it is found that among the three considered similitude laws, adopting average horizontal rate can better and accurately characterize the scale effect on the important mechanical properties of lead-rubber bearings.
摘要 I
ABSTRACT II
致謝 IV
目錄 V
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究重點及內容 3
第二章 文獻回顧 5
2.1 鉛心橡膠支承墊基本力學行為 5
2.2 雙彈簧模型 6
2.3 彈性模數修正 8
2.4 鉛心橡膠支承墊之縮尺試驗 9
2.5 鉛心橡膠支承墊之鉛心溫度效應 9
第三章 雙軸向動態試驗系統控制方法討論 13
3.1 雙軸向動態試驗系統規格 13
3.2 控制邏輯與誤差修正探討 13
3.2.1 目的 13
3.2.2 分析方法與假設 14
3.2.2.1 無摩擦力靜力平衡 16
3.2.2.2 無摩擦力動力平衡 17
3.2.2.3 有摩擦力靜力平衡 18
3.2.2.4 有摩擦力動力平衡 20
3.3 小結與討論 20
第四章 直接量測系統設計 23
4.1 目的 23
4.2 BATS系統參數識別 23
4.3 系統設計與初步分析 25
4.3.1 直接量測系統之傳力機制 25
4.3.2 簡化假設與分析 26
4.3.2.1 抗旋轉勁度比較 26
4.3.2.2 轉接版強度檢核 28
4.4 有限元素分析驗證 28
4.4.1 有限元素分析軟體使用與介紹 28
4.4.2 垂直軸壓分析 29
4.4.2.1 模型建置及介面假設 29
4.4.2.2 分析結果探討 30
4.4.3 試驗條件分析 31
4.4.3.1 模型建置及介面假設 31
4.4.3.2 分析結果探討 31
第五章 鉛心橡膠支承墊試驗 33
5.1 試驗目的 33
5.2 試驗規劃 33
5.2.1 試體設計 33
5.2.2 試驗項目設計 34
5.2.3 量測儀器 36
5.2.4 試驗安裝 37
第六章 鉛心橡膠支承墊試驗結果 39
6.1 數據分析 39
6.2 雙彈簧模型模擬試驗結果 40
6.3 溫度模型模擬試驗結果 41
6.4 尺寸效應試驗結果探討 42
6.4.1 垂直軸壓相依性 43
6.4.2 平均水平速率相依性 43
6.4.3 平均剪應變率相依性 44
6.5 小結與討論 44
第七章 直接量測系統試驗後檢討 47
7.1 遲滯迴圈比較 47
7.2 外接式光學量測儀器結果探討 48
7.2.1 轉接版 49
7.2.2 直接量測系統構架 49
第八章 結論與未來展望 51
8.1 結論 51
8.2 未來展望 53
參考文獻 55
附表 57
附圖 89
[1] 內政部營建署 (2011). 建築物耐震設計規範. 台北.
[2] Public Work Research Institute (1992). Seimic Isolation Design of Highway Bridges.
[3] Skinner, R. I., & Robinson, W. H., & McVerry, G. H. (1993). An Introduction to Seismic Isolation. Chichester, England: John Wiley & Songs.
[4] Naeim, F., & Kelly, J. M. (1999). Design of Seismic Isolated Structures: From Theory to Practice. New York: Wiley.
[5] Hwang, J. S., & Ku, S. W. (1997). Analytical Modeling of High Damping Rubber Bearing. Journal of structural Engineering (ASCE), 123(8), 1029-1036.
[6] Ministry of Works and Development (1983). Design of Lead-Rubber Bridge Bearings.
[7] Abe, M., Yoshida, J., Fujino, Y. (2004). Multiaxial Behaviors of Laminated Rubber Bearings and Their Modeling. I: Experimental Study. Journal of Structural Engineering (ASCE), 130(8), 1119-1132.
[8] Kelly, J.M. (1993). Earthquake-Resistant Design with Rubber. Springer.
[9] Kikuchi, M. & Ishii, K. (2018). Thermal-Mechanical Coupled Behavior of Elastomeric Isolation Bearings under Cyclic Loading. Paper presented at the 16TH European Conference on Earthquake Engineering, Thessaloniki.
[10] Kalpakidis, I. V., & Constantinou, M. C. (2009). Effect of Heating on the Behavior of Lead-Rubber Bearing. I: Theory. Journal of Structural Engineering (ASCE) 135, 1440–1449.
[11] American Association of State Highway and Transportation Officials. (1999). Guide Specilcations for Seismic Isolation Design. Washington.
[12] 隔震結構設計 (2001). 日本建築學會.
[13] Murota, N. & Mori, T. (2020). An Experimental Study on Scale Effect in Dynamic Shear Properties of High-Damping Rubber Bearings. Front. Built Environ. 6:37.
[14] 林旺春,劉瓊林,汪向榮,楊卓諺,游忠翰,林晉承,盧煉元,黃震興,張國鎮 (2022). 雙軸向動態試驗系統之基本參數研究與探討.
[15] European Committee for Standardization (2009), EN 15129:2009 Anti-Seismic Devices. CEN.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top