|
1. https://nexgenpowersystems.com/. 2. A. Imbruglia, et al. WInSiC4AP: Wide band gap Innovative SiC for Advanced Power, AEIT AUTOMOTIVE 2019, p.1. 3. A. Hassan, et al., GaN Integration Technology, an Ideal Candidate for High-Temperature Applications: A Review, IEEE Access(2018). 6, p.78790. 4. https://www.edn.com/, 5. https://www.Qorvo.com. 6. http://www.yole.fr/. 7. C. Yang, Fabrication and characterization of AlGaN/GaN high electron mobility transistor, Auburn university (2015). 8. P. Javorka, Fabrication and characterization of AlGaN/GaN high electron mobility transistors, Bibliothek der RWTH Aachen (2004). 9. P. Zanoni, GaN HEMT reliability research-a white paper(2017). 10. M. G. Ancona et al., Fully coupled thermoelectromechanical analysis of GaN high electron mobility transistor degradation, J. Appl. Phys.(2012). 111, p.074504. 11. M. Meneghini et al., Time-dependent degradation of AlGaN/GaN high electron mobility transistors under reverse bias, Appl. Phys. Lett.(2012). 100, p.033505. 12. F. Gao et al., Impact of water-assisted electrochemical reactions on the OFF-state degradation of AlGaN/GaN HEMTs, IEEE Trans. Electron Devices(2013). 61, p.437. 13. F. Lin et al. Low resistance Ti/Al/Ni/Au Ohmic contact to (NH 4) 2 S x treated n-type GaN for high temperature applications, ICSIST 2008, p.726 14. M. Piazza et al., Degradation of TiAlNiAu as ohmic contact metal for GaN HEMTs, Microelectron. Reliab.(2009). 49, p.1222. 15. R. Cuerdo, et al. Characterization of Schottky contacts on n-GaN at high temperature, EDSEC 2005, p.175 16. Y. Chen et al., Degradation mechanism of AlGaN/GaN HEMTs during high temperature operation stress, Semiconductor Science Technology(2017). 33, p.015019. 17. R. Guggenheim et al. Roadmap review for cooling high-power GaN HEMT devices, COMCAS 2017, p.1 18. A. Bar-Cohen, Gen-3 thermal management technology: role of microchannels and nanostructures in an embedded cooling paradigm, J. Nanotechnol. Eng. Med. (2013). p.4, 19. J. Ditri et al., GaN Unleashed: The Benefits of Microfluidic Cooling, IEEE Trans. Semicond. Manuf.(2016). 29, p.376. 20. F. Qi et al. Advanced cooling solutions of high power automotive module, PCIM Asia 2017, p.1 21. J. Blevins et al. Recent progress in GaN-on-diamond device technology, CS MANTECH 2014, p.105 22. T. Anderson et al. Process improvements for an improved diamond-capped GaN HEMT device, CS MANTECH 2013, p.206 23. A. D. Koehler et al., Topside Nanocrystalline Diamond Integration on AlGaN/GaN HEMTs for High Temperature Operation, HITEC 2014, p. 1. 24. M. Alomari et al., Diamond overgrown InAlN/GaN HEMT, Diamond Relat. Mater.(2011). 20, p.604. 25. D. Maier, et al., InAlN/GaN HEMTs for Operation in the 1000 oC Regime: A First Experiment, IEEE Electron Device Lett.(2012). 33, p.985. 26. C. Liao, Growth and optoelectronic characteristics of ultrananocrystalline diamond thin films on III-nitride based light-emitting diode, National Taiwan university of science and technology (2019). 27. C. J. Wort et al., Diamond as an electronic material, Mater. Today(2008). 11, p.22. 28. S. Bhattacharyya et al., Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films, Appl. Phys. Lett.(2001). 79, p.1441. 29. N. Wiora et al., Grain boundary dominated electrical conductivity in ultrananocrystalline diamond, J. Appl. Phys.(2017). 122, p.145102. 30. I. A. Velasco-Davalos, Hydrothermal epitaxy of functional perovskite thin films,Université du Québec, Institut national de la recherche scientifique (2016). 31. W. Yuan et al., Highly conductive nitrogen-doped ultrananocrystalline diamond films with enhanced field emission properties: triethylamine as a new nitrogen source, J. Mater. Chem. C(2016). 4, p.4778. 32. A. Saravanan et al., Highly conductive diamond–graphite nanohybrid films with enhanced electron field emission and microplasma illumination properties, ACS Appl. Mater. Interfaces (2015). 7, p.14035. 33. Y. Tzeng et al., Nitrogen-incorporated ultrananocrystalline diamond and multi-layer-graphene-like hybrid carbon films, Sci. Rep.(2014). 4, p.4531. 34. T. Chen, Growth and characterizations of multi layer graphene/Nitrogen doped ultrananocrystalline diamond electrode on light-emitting diode, National Taiwan university of science and technology (2021). 35. H. Shu et al., What are the active carbon species during graphene chemical vapor deposition growth, Nanoscale(2015). 7, p.1627. 36. X. Li et al., Evolution of graphene growth on Ni and Cu by carbon isotope labeling, Nano Lett.(2009). 9, p.4268. 37. M. Losurdo et al., Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure, Phys Chem Chem Phys(2011). 13, p.20836. 38. T. Liang, et al., From Solid Carbon Sources to Graphene, Chin. J. Chem.(2016). 34, p.32. 39. Z. Z. Sun et al., Growth of graphene from solid carbon sources (vol 468, pg 549, 2010), Nature(2011). 471, p.124. 40. Z. W. Peng et al., Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel, ACS Nano(2011). 5, p.8241. 41. Z. Yan, et al., Growth of bilayer graphene on insulating substrates, ACS Nano(2011). 5, p.8187. 42. H. J. Shin et al., Transfer-free growth of few-layer graphene by self-assembled monolayers, Adv. Mater.(2011). 23, p.4392. 43. M. Xu, et al., Production of extended single-layer graphene, ACS Nano(2011). 5, p.1522. 44. J. M. Garcia et al., Multilayer graphene grown by precipitation upon cooling of nickel on diamond, Carbon(2011). 49, p.1006. 45. G. Fisichella et al., Current transport in graphene/AlGaN/GaN vertical heterostructures probed at nanoscale, Nanoscale(2014). 6, p.8671. 46. G. Fisichella et al., From Schottky to Ohmic graphene contacts to AlGaN/GaN heterostructures: Role of the AlGaN layer microstructure, Appl. Phys. Lett.(2014). 105, p.063117.
47. P. Sung Park et al., Ohmic contact formation between metal and AlGaN/GaN heterostructure via graphene insertion, Appl. Phys. Lett.(2013). 102, p.153501. 48. A. Nourbakhsh et al., Modified, semiconducting graphene in contact with a metal: Characterization of the Schottky diode, Appl. Phys. Lett.(2010). 97, p.163101. 49. S. Kim, et al., Graphene-GaN Schottky diodes, Nano Res.(2015). 8, p.1327. 50. B. Pandit et al., Current transport mechanism in graphene/AlGaN/GaN heterostructures with various Al mole fractions, AIP Adv.(2016). 6, p.065007. 51. 52. G. N. Zhou et al., Gate Leakage Suppression and Breakdown Voltage Enhancement in p-GaN HEMTs Using Metal/Graphene Gates, IEEE Trans. Electron Devices(2020). 67, p.875.
|