|
1. Yin, J., Z. Zou, and J. Ye, Photophysical and Photocatalytic Properties of MIn0.5Nb0.5O3 (M = Ca, Sr, and Ba). The Journal of Physical Chemistry B, 2002. 107(1): p. 61-65. 2. Chavadej, S., et al., Photocatalytic degradation of 2-propanol by using Pt/TiO2 prepared by microemulsion technique. Chemical Engineering Journal, 2008. 137(3): p. 489-495. 3. Hoque, M.A. and M.I. Guzman, Photocatalytic Activity: Experimental Features to Report in Heterogeneous Photocatalysis. Materials (Basel), 2018. 11(10). 4. Kotolevich, Y., et al., Au/TiO 2 catalysts promoted with Fe and Mg for n -octanol oxidation under mild conditions. Catalysis Today, 2016. 278: p. 104-112. 5. Klein, M., et al., The effect of metal cluster deposition route on structure and photocatalytic activity of mono- and bimetallic nanoparticles supported on TiO2 by radiolytic method. Applied Surface Science, 2016. 378: p. 37-48. 6. Kang, M.G., H.-E. Han, and K.-J. Kim, Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 1999. 125(1-3): p. 119-125. 7. Chu, H., et al., Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr(VI) on MoSe2. Applied Catalysis A: General, 2016. 521: p. 19-25. 8. Arabzadeh, A. and A. Salimi, One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation. J Colloid Interface Sci, 2016. 479: p. 43-54. 9. Kitano, M., et al., Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J Phys Chem B, 2006. 110(50): p. 25266-72. 10. Wu, G. and A. Chen, Direct growth of F-doped TiO2 particulate thin films with high photocatalytic activity for environmental applications. Journal of Photochemistry and Photobiology A: Chemistry, 2008. 195(1): p. 47-53. 11. Wang, Q., et al., Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. Journal of Alloys and Compounds, 2017. 690: p. 139-144. 12. Nguyen, T.L., et al., Improved photodegradation of antibiotics pollutants in wastewaters by advanced oxidation process based on Ni-doped TiO2. Chemosphere, 2022. 302: p. 134837. 13. El-Sheikh, S.M., et al., Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Separation and Purification Technology, 2017. 173: p. 258-268. 14. Gautam, J., J.-M. Yang, and B.L. Yang, Transition metal co-doped TiO2 nanotubes decorated with Pt nanoparticles on optical fibers as an efficient photocatalyst for the decomposition of hazardous gaseous pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022. 643. 15. Wan, J., et al., Ternary composites of TiO2 nanotubes with reduced graphene oxide (rGO) and meso-tetra (4-carboxyphenyl) porphyrin for enhanced visible light photocatalysis. International Journal of Hydrogen Energy, 2016. 41(33): p. 14692-14703. 16. Albay, C., et al., New dye sensitized photocatalysts: Copper(II)-phthalocyanine/TiO2 nanocomposite for water remediation. Journal of Photochemistry and Photobiology A: Chemistry, 2016. 324: p. 117-125. 17. Amaral, R., et al., Physical and optical properties of Ag3PO4 decorated TiO2 based nanostructures. Journal of Solid State Chemistry, 2022. 305. 18. Bortolotto, V., et al., Photocatalytic behaviour of Ag3PO4, Fe3O4 and Ag3PO4/Fe3O4 heterojunction towards the removal of organic pollutants and Cr(VI) from water: Efficiency and light-corrosion deactivation. Inorganic Chemistry Communications, 2022. 141. 19. Dai, Y., et al., Photodegradation of acenaphthylene over plasmonic Ag/Ag3PO4 nanopolyhedrons synthesized via in-situ reduction. Applied Surface Science, 2022. 572. 20. Romanos, G.E., et al., Hybrid Ultrafiltration/Photocatalytic Membranes for Efficient Water Treatment. Industrial & Engineering Chemistry Research, 2013. 52(39): p. 13938-13947. 21. Xu, Z., et al., In-situ fabrication and photocatalytic activity of AgBr/Ag3PO4 heterojunctions. Materials Letters, 2022. 323. 22. Raeisi-Kheirabadi, N. and A. Nezamzadeh-Ejhieh, A Z-scheme g-C3N4/Ag3PO4 nanocomposite: Its photocatalytic activity and capability for water splitting. International Journal of Hydrogen Energy, 2020. 45(58): p. 33381-33395. 23. Deng, M. and Y. Huang, The phenomena and mechanism for the enhanced adsorption and photocatalytic decomposition of organic dyes with Ag3PO4/graphene oxide aerogel composites. Ceramics International, 2020. 46(2): p. 2565-2570. 24. Wang, L., et al., Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews, 2016. 307: p. 361-381. 25. Wang, W., et al., Recent Progress in Metal-Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Adv Sci (Weinh), 2017. 4(4): p. 1600371. 26. Zhao, S.-N., et al., Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors. Coordination Chemistry Reviews, 2017. 337: p. 80-96. 27. Zhao, S.-N., et al., An ideal detector composed of a 3D Gd-based coordination polymer for DNA and Hg2+ ion. Inorganic Chemistry Frontiers, 2016. 3(3): p. 376-380. 28. Singco, B., et al., Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal–organic frameworks. Microporous and Mesoporous Materials, 2016. 223: p. 254-260. 29. Wang, B., et al., Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008. 453(7192): p. 207-11. 30. Bárcia, P.S., et al., Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous and Mesoporous Materials, 2011. 139(1-3): p. 67-73. 31. Qiu, Y.C., et al., Face-Sharing Archimedean Solids Stacking for the Construction of Mixed-Ligand Metal-Organic Frameworks. J Am Chem Soc, 2019. 141(35): p. 13841-13848. 32. Lu, W., et al., Tuning the structure and function of metal-organic frameworks via linker design. Chem Soc Rev, 2014. 43(16): p. 5561-93. 33. Shultz, A.M., et al., A catalytically active, permanently microporous MOF with metalloporphyrin struts. J Am Chem Soc, 2009. 131(12): p. 4204-5. 34. Chughtai, A.H., et al., Metal-organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem Soc Rev, 2015. 44(19): p. 6804-49. 35. Xi, J., et al., (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal-organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chem Commun (Camb), 2015. 51(52): p. 10479-82. 36. Sun, J.-K. and Q. Xu, Functional materials derived from open framework templates/precursors: synthesis and applications. Energy & Environmental Science, 2014. 7(7). 37. Xiao, J.D., et al., Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angew Chem Int Ed Engl, 2016. 55(32): p. 9389-93. 38. Salari, H. and M. Sadeghinia, MOF-templated synthesis of nano Ag2O/ZnO/CuO heterostructure for photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2019. 376: p. 279-287. 39. Gomes Silva, C., et al., Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation. Chemistry, 2010. 16(36): p. 11133-8. 40. Wei, S., et al., Integration of Phosphotungstic Acid into Zeolitic Imidazole Framework-67 for Efficient Methylene Blue Adsorption. ACS Omega, 2022. 7(11): p. 9900-9908. 41. Yuan, C., et al., ZIF-67 with Argon annealing treatment for visible light responsive degradation of organic dyes in a wide pH range. Microporous and Mesoporous Materials, 2019. 285: p. 13-20. 42. Cavka, J.H., et al., A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc, 2008. 130(42): p. 13850-1. 43. Lee, Y., et al., Photocatalytic CO2 reduction by a mixed metal (Zr/Ti), mixed ligand metal-organic framework under visible light irradiation. Chem Commun (Camb), 2015. 51(26): p. 5735-8. 44. Wei, Y.P., et al., Different functional group modified zirconium frameworks for the photocatalytic reduction of carbon dioxide. Dalton Trans, 2019. 48(23): p. 8221-8226. 45. Wang, D., M. Wang, and Z. Li, Fe-Based Metal–Organic Frameworks for Highly Selective Photocatalytic Benzene Hydroxylation to Phenol. ACS Catalysis, 2015. 5(11): p. 6852-6857. 46. Xu, B., et al., Glycol assisted synthesis of MIL-100(Fe) nanospheres for photocatalytic oxidation of benzene to phenol. Catalysis Communications, 2017. 98: p. 112-115. 47. Phan, A., et al., Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc Chem Res, 2010. 43(1): p. 58-67. 48. Huang, X.C., et al., Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed Engl, 2006. 45(10): p. 1557-9. 49. Park, K.S., et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci U S A, 2006. 103(27): p. 10186-10191. 50. Wang, Z., et al., Improving ZIF-8 stability in the preparation process of polyimide-based organic solvent nanofiltration membrane. Separation and Purification Technology, 2019. 227. 51. Aceituno Melgar, V.M., J. Kim, and M.R. Othman, Zeolitic imidazolate framework membranes for gas separation: A review of synthesis methods and gas separation performance. Journal of Industrial and Engineering Chemistry, 2015. 28: p. 1-15. 52. Schejn, A., et al., Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm, 2014. 16(21): p. 4493-4500. 53. Nasrollahi, N., et al., Photocatalytic-membrane technology: a critical review for membrane fouling mitigation. Journal of Industrial and Engineering Chemistry, 2021. 93: p. 101-116. 54. Shi, G., et al., Zr-based MOF @ carboxymethylated filter paper: Insight into construction and methylene blue removal mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 613. 55. Gross, A.F., E. Sherman, and J.J. Vajo, Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Trans, 2012. 41(18): p. 5458-60. 56. Cheng, J., et al., Preparation of Zeolitic Imidazolate Frameworks and Their Application as Flame Retardant and Smoke Suppression Agent for Rigid Polyurethane Foams. Polymers (Basel), 2020. 12(2). 57. Batvandi, M., A. Haghighatzadeh, and B. Mazinani, Synthesis of Ag3PO4 microstructures with morphology-dependent optical and photocatalytic behaviors. Applied Physics A, 2020. 126(7). 58. Cheng, R., et al., Photocatalytic Inactivation of Bacteriophage f2 with Ag3PO4/g-C3N4 Composite under Visible Light Irradiation: Performance and Mechanism. Catalysts, 2018. 8(10). 59. Wang, T., et al., Thermally treated zeolitic imidazolate framework-8 (ZIF-8) for visible light photocatalytic degradation of gaseous formaldehyde. Chem Sci, 2020. 11(26): p. 6670-6681. 60. Yan, X., et al., Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. Journal of Physics D: Applied Physics, 2004. 37(6): p. 907-913. 61. Chang, N., et al., Facile construction of Z-scheme AgCl/Ag-doped-ZIF-8 heterojunction with narrow band gaps for efficient visible-light photocatalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 616. 62. Si, Y., et al., Fabrication of a novel core–shell CQDs@ZIF-8 composite with enhanced photocatalytic activity. Journal of Materials Science, 2020. 55(27): p. 13049-13061. 63. Tauc, J., Optical Properties and Electronic Structure of Amorphous Ge and Si. Materials Research Bulletin, 1976. 3: p. 37-46. 64. Davis, E.A. and N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philosophical Magazine, 1970. 22(179): p. 0903-0922. 65. Huang, Z., et al., Stable core–shell ZIF-8@ZIF-67 MOFs photocatalyst for highly efficient degradation of organic pollutant and hydrogen evolution. Journal of Materials Research, 2021. 36(3): p. 602-614. 66. Kadiya, K., et al., Comparative photocatalytic dye and drug degradation study using efficient visible light-induced silver phosphate nanoparticles. Environ Sci Pollut Res Int, 2021. 28(34): p. 46390-46403. 67. Izadpanah Ostad, M., M. Niknam Shahrak, and F. Galli, The influence of different synthetic solvents on photocatalytic activity of ZIF-8 for methanol production from CO2. Microporous and Mesoporous Materials, 2021. 326. 68. Wang, Y., et al., Co-precipitation synthesis of reusable ZnAl-CLDH/ZIF-8 heterojunction for enhanced photodegradation of organic dye. Journal of Materials Science: Materials in Electronics, 2021. 32(24): p. 28051-28064. 69. Schneider, J.T., et al., Use of scavenger agents in heterogeneous photocatalysis: truths, half-truths, and misinterpretations. Phys Chem Chem Phys, 2020. 22(27): p. 15723-15733. 70. Hou, D., et al., Bi4Ti3O12 nanofibers-BiOI nanosheets p-n junction: facile synthesis and enhanced visible-light photocatalytic activity. Nanoscale, 2013. 5(20): p. 9764-72. 71. Pan, H., et al., High-efficiency, compressible, and recyclable reduced graphene oxide/chitosan composite aerogels supported g-C3N4/BiOBr photocatalyst for adsorption and degradation of rhodamine B. Journal of Environmental Chemical Engineering, 2022. 10(2). 72. Wang, Z., et al., Efficient and sustainable photocatalytic degradation of dye in wastewater with porous and recyclable wood foam@V2O5 photocatalysts. Journal of Cleaner Production, 2022. 332. 73. Bai, W., et al., Robust and recyclable macroscopic g-C3N4/cellulose hybrid photocatalysts with enhanced visible light photocatalytic activity. Applied Surface Science, 2020. 504. 74. Liu, C., et al., Recyclable and stable flexible photocatalyst of dopamine-assisted metal-free conductive polymer heterojunction. Materials Letters, 2018. 212: p. 239-242. 75. Lan, M., et al., Hierarchical polyurethane/RGO/BiOI fiber composite as flexible, self-supporting and recyclable photocatalysts for RhB degradation under visible light. Journal of Industrial and Engineering Chemistry, 2022. 108: p. 109-117. 76. Di, J., et al., Transparent g-C3N4 thin film: Enhanced photocatalytic performance and convenient recycling. Journal of Physics and Chemistry of Solids, 2021. 155. 77. Zeng, Q., et al., Facile preparation of recyclable magnetic Ni@filter paper composite materials for efficient photocatalytic degradation of methyl orange. J Colloid Interface Sci, 2021. 582(Pt A): p. 291-300. 78. Xu, M., et al., In-situ growth of W18O49@carbon clothes for flexible-easy-recycled photocatalysts with high performance. Materials Letters, 2018. 230: p. 224-227.
|