跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/03/18 12:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡鎮宇
研究生(外文):TASI,CHEN-YU
論文名稱:釩液流電池之電解液不平衡偵測方案設計與實現
論文名稱(外文):Design and Implementation of Electrolyte Imbalance Detection Scheme for Vanadium Redox Flow Battery
指導教授:馬肇聰
指導教授(外文):MA,CHAO-TSUNG
口試委員:陳源林洪千萬
口試委員(外文):CHEN,YUANG-LINHUN,CHIEN-WAN
口試日期:2022-03-21
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:112
中文關鍵詞:再生能源發電儲能系統釩氧化還原液流電池電解液不平衡光纖感測元件
外文關鍵詞:renewable energy power generationenergy storage systemvanadium redox flow batteryelectrolyte imbalanceoptical fiber sensing device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,再生能源發電及分散式微電網技術為各國電能系統主要的發展項目,然而,再生能源發電容易受到環境的影響造成電力輸出不穩定,通常需要搭配適當容量之儲能設備方能使其正常工作。眾多的大容量储能系統中,釩氧化還原液流電池(Vanadium Redox Flow Battery, VRFB),具有電池充、放電循環壽命長、電池容量大及較佳的安全性等優點,在新式能源與微電網系統的應用中具有明顯優勢。VRFB工作時隨著充、放電循環次數的增加其電解液會逐漸失去平衡,而電解液不平衡將造成 VRFB 可用容量縮減,這點在實際應用上會是一個很大的問題。因此,本文提出一種新穎的 VRFB 電解液不平衡線上偵測方案,所提VRFB電解液不平衡偵測系統主要是藉由即時掌握VRFB電解液的折射率(Refractive Index, RI)、溫度(Temperature, T)及電量狀態(State Of Charge, SOC)以獲得電解液不平衡之訊息。有關上述VRFB電解液參數之量測,本文使用具抗酸鹼能力的光纖感測元件作為電解液之折射率與溫度之即時測量元件。本文首先回顧了文獻中已提出之液流電池系統及電解液不平衡檢測方法,接著說明所提VRFB 電解液不平衡偵測方案及所需之數值分析演算法與光纖式感測元件之設計細節。最後所提偵測方案經由三組測試用的不同濃度之電解液樣本檢驗,檢驗結果發現量測到的UR值最大誤差為0.65%。因此從上述實驗結果可以證明本文提出之不平衡偵測方案兼具有效性及準確性。
In recent years, renewable energy power generation (REPG) and distributed microgrid technologies have become the main development items for power systems in all countries in the world. However, REPG is easily affected by the environment, resulting in unstable power output. Usually, an energy storage system (ESS) with appropriate capacity is required to achieve a controllable REPG. Among many large-capacity ESSs, the vanadium redox flow battery (VRFB) has the advantages of long life, large battery capacity and safety, etc. However, when the VRFB is working, with the increase of charge and discharge cycles, the VRFB's electrolyte will gradually lose its balance, and the imbalance of electrolyte will reduce the available capacity of the VRFB, which will be a big problem in practical applications. Therefore, this thesis proposes a novel on-line detection scheme for VRFB electrolyte imbalance. The proposed VRFB electrolyte imbalance detection system needs to detect the refractive index (RI), temperature (T) and the state of charge (SOC) of VRFB’s electrolyte in real time. Regarding the measurement of the above-mentioned VRFB electrolyte parameters, the acid- and alkali-resistant optical fiber sensing devices are used as the real-time measurement element for the RI and T of the electrolyte. This paper firstly reviews the redox flow battery systems and the electrolyte imbalance detection methods proposed in the literature, and then describes the proposed VRFB electrolyte imbalance detection scheme and the required numerical analysis algorithms followed by the design details of the optical fiber sensing devices. Finally, the proposed detection scheme was tested by three sets of electrolyte samples with different concentrations. The test results found that the maximum error of the measured UR value was 0.65%. Therefore, it can be proved from the above experimental results that the imbalance detecting scheme proposed in this thesis is both effective and accurate.
誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 V
表目錄 IX
符號索引 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 7
1.3 文獻回顧 8
1.4 論文架構 18
第二章 氧化還原液流電池 19
2.1 氧化還原液流電池系統架構及原理 19
2.2 氧化還原液流電池種類 20
2.3 VRFB電解液製備方法 23
2.4 電解液不平衡 24
第三章 VRFB電解液不平衡偵測方案 34
3.1 電解液不平衡偵測方案規劃 34
3.2 光纖感測元件之設計 37
3.2.1 D型光纖Fabry-Perot干涉儀 37
3.2.2 光學膠灌注中空光纖溫度感測元件 42
3.3 VRFB電解液不平衡偵測方案實驗系統設計 44
3.4 快速復立葉轉換 50
3.4.1 快速傅立葉轉換分波案例分析 51
第四章 電解液量測實驗與結果分析 60
4.1 電解液樣本調配制 60
4.2 電解液實際量測實驗及結果 61
第五章 結論及未來研究方向 92
5.1 結論 92
5.2 未來研究方向 92
參考文獻 93

[1]REN21 , “Renewables 2021 Global Status Report, ” pp. 1-371, 2021.
[2]經濟部能源局,https://www.moeaboe.gov.tw/ECW/populace/Law/Content. aspx?menu_id=13206,一定契約容量以上之電力用戶應設置再生能源發電設備管理辦法。
[3]X. Fan , B. Liu , J. Liu , J. Ding, X. Han , Y.Deng , X. Lv , Y. Xie , B. Chen,W. Hu and C.Zhong, “Battery Technologies for Grid‑Level Large‑Scale Electrical Energy Storage, ”Transactions of Tianjin University, vol. 26 , pp. 92–103, 2020.
[4]Asian Development Bank , “Handbook On Battery Energy Storage System, “pp. 1-94, 2018.
[5]https://www.fsp-group.com/tw/knowledge-prd-44.html,近年來潛能無限的儲能系統解決方案,FSP。(accesses on 2022/01/10)
[6]K. Lourenssen , J. Williams , F. Ahmadpour , R. Clemmer and S. Tasnim, “ Vanasium redox flow batteries: A comprehensive review, ” Journal of Energy Storage, vol. 25, pp. 1-17, 2019.
[7]D. Mazzeo, “Solar and wind assisted heat pump to meet the building air conditioning and electric energy demand in the presence of an electric vehicle charging station and battery storage, ” Journal of Cleaner Production, vol. 213, pp. 1228-1250, 2019.
[8]https://reneweconomy.com.au/victorian-dairy-targets-100-renewables-with-solar-vanadium-flow-battery-68551/, Victorian dairy targets 100% renewables with solar vanadium flow battery, Renew Economy. (accesses on 2022/01/12)
[9]http://www.escn.com.cn/news/show-1312999.html,韓國H2公司計劃在加利福尼亞州部署液流電池儲能係統,中國儲能網。(accesses on 2022/01/12)
[10]https://chuneng.bjx.com.cn/news/20201201/1119256.shtml,美國加州消防局部署全釩液流儲能電池證長效非鋰儲能技術,北極星儲能網。(accesses on 2022/01/12)
[11]https://money.udn.com/money/story/122359/5637105?from=edn_hotlist_storybottom,住友全釩液流電池系統長效型儲能首選,經濟日報。(accesses on 2022/01/12)
[12]Y. Zhang , L. Liu , J. Xi , Z. Wua and X. Qiu,“ The benefits and limitations of electrolyte mixing in vanadium flow batteries, ”Applied Energy, vol. 204, pp. 373-381, 2017.
[13]A. Bhattaraia, N. Waib, R.Schweissc, A. Whiteheadd, G. G. Scherere, P. C. Ghimireb, T. M. Limg and H. H. Hngh, “Vanadium redox flow battery with slotted porous electrodes and automaticrebalancing demonstrated on a 1 kW system level, ”Applied Energy, vol. 236, pp. 437-443, 2019.
[14]A. Bhattarai, P. C. Ghimire, A.Whitehead, R. Schweiss, G. G. Scherer, N. Wai and H.H.Hng, “Novel Approaches for Solving the Capacity Fade Problem during Operation of a Vanadium Redox Flow Battery, ” ResearchGate, vol.4, no. 48, pp. 1-9, 2018.
[15]N. Polia, M.Schäfferc, A. Trovòa, J. Noackc, M. Guarnieria and P. Fischerc, “Novel electrolyte rebalancing method for vanadium redox flow batteries, ” Chemical Engineering Journal, vol. 405, pp. 1-13, 2021.
[16]Z. Li , L. Liu ,Y. Zhao, J. Xi , Z. Wu and X. Qiu, “The indefinite cycle life via a method of mixing and online electrolysis for vanadium redox flow batteries, ” Chemical Engineering Journal, vol. 438, pp. 1-8, 2019.
[17]S. K. Hee, J. C. Soo, S. J. Young, P. S. Kook, K. D. Ha and Y. S.Hwa, “Real-time monitoring of the state of charge (SOC) in vanadium redox-flow batteries using UV–Vis spectroscopy in operando mode, ”Journal of Energy Storage, vol. 27, pp. 1-12, 2020.
[18]N. Roznyatovskaya, T. Herr, M. Küttinger, M.Fühl, J. Noack, K. Pinkwart and J. Tübke, “Detection of capacity imbalance in vanadium electrolyte and its electrochemical regeneration for all-vanadium redox-flow batteries, ”Journal of Power Sources, vol. 302, pp. 79-83, 2016.
[19]W. Zhang, L. Liu and L. Liua, “An on-line spectroscopic monitoring system for the electrolytes in vanadium redox flow batteries, ”Royal Society Of Chemistry, pp. 100235-100243, 2015.
[20]S. Rudolph, U. Schröder, I. M. Bayanov, K. Blenke and D. Hage, “High resolution state of charge monitoring of vanadium electrolytes with IR optical sensor, ”Journal of Electroanalytical Chemistry, vol.694, pp. 17-22, 2013.
[21]K .Maa, X. Kuanga, L. Liua, Y. Zhanga, Y. Sunb, J. Xia, Y. Hec and D. Lie, “An optimized angular total internal reflection sensor with high resolution in vanadium flow batteries, ”IEEE Transactions on Instrumentation and Measurement, vol. 69, No. 6, pp. 1-20, 2020.
[22]S. Corcuera and M. S. Kazacos, “State-Of-Charge Monitoring And Electrolyte Rebalancing Methords For The Vanaditum Redox Flow Battery, ”European Chemical Bulletin, vol. 1, No. 12, pp. 511-519, 2012.
[23]X. Li, J. Xiong, A.Tang, Y.Qin, J.Liu and C.Yan, “Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery, ”Applied Energy, vol. 211, pp. 1050-1059, 2018.
[24]K. Ngamsai and A .Arpornwichanop, “Analysis and measurement of the electrolyte imbalance in a vanadium redox flow battery, ”Journal of Power Sources, vol. 282, pp. 534-543, 2015.
[25]K. Beyer, J. g. Austing, B. Satola, T. D. Nardo, M. Zobel and C. Agert, “Electrolyte Imbalance Determination of a Vanadium Redox Flow Battery by Potential-Step Analysis of the Initial Charging, ”ChemSusChem, vol. 13, pp. 2066-2071, 2020.
[26]K. Ngamsai, A. Arpornwichanop, “Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device, ”Journal of Power Sources, vol. 298, pp. 150-157, 2015.
[27]張秀麗,吳濤,王應高,李永立,王娜,郝承磊,馬茜,一種全釩液流電池SOC檢測方法及系統,中華人民共和國國家知識產權局,2013。
[28]H. Zhanga, Y. Tana, J. Lia and B. Xuea, “Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance, ” Electrochimica Acta, vol. 248, pp. 603-613, 2017.
[29]R .Kima, S. Yuka, J. H. Leea, C.Choia, S. Kima, J. Heoa, H. T. Kima, “Scaling the water cluster size of Nafion membranes for a high performance Zn/Br redox flow battery, ” Journal of Membrane Science, vol. 564, pp. 852-858, 2018.
[30]K. Mariyappan, R. Velmurugan, B. Subramanian, P. Ragupathy and M. Ulaganathan, “Low loading of Pt@Graphite felt for enhancing multifunctional activity towards achieving high energy efficiency of Zn–Br2 redox flow battery, ”Journal of Power Sources, vol. 482, pp. 1-10, 2020.
[31]Z. Xiea, B.Liua, C. Xiec, B. Yanga, Y. Jiaoa, D. Caia, L. Yanga, Q. Shua and A. Shia, “Che mically reduced graphene oxide paper as positive electrode for advanced Zn/Ce redox flow battery, ”Materials Chemistry and Physics, vol. 220, pp. 208-215, 2018.
[32]K. Amini and M. D. Pritzker, “In situ polarization study of zinc–cerium redox flow batteries, ” Journal of Power Sources, vol. 471, pp. 1-9, 2020.
[33]M. Nandanwara and S. Kumarb, “A modelling and simulation study of soluble lead redox flow battery: Effect of presence of free convection on the battery characteristics, ”Journal of Power Sources, vol. 412, pp. 536-544, 2019.
[34]M. N. Nandanwar, K. S. Kumar, S. S. Srinivas and D. M. Dinesh, “Pump-less, free-convection-driven redox flow batteries: Modelling, simulation, and experimental demonstration for the soluble lead redox flow battery, ” Journal of Power Sources, vol. 454, pp. 1-10, 2020.
[35]K. Lourenssen, J. Williams, F. Ahmadpour, R.Clemmer and S.Tasnim, “Vanadium redox flow batteries: A comprehensive review, ” Journal of Energy Storage, vol. 25, pp. 1-17, 2019.
[36]Y. Li, X. Zhang, J. Bao and M. S. Kazacos, “Studies on optimal charging conditions for vanadium redox flow batteries, ” Journal of Energy Storage, vol. 11, pp. 191-199, 2017.
[37]S. Roe, C. Menictas and M. S. Kazacosa, “High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte, ” Journal of The Electrochemical Society, vol. 163, no. 1, pp. 5023-5028, 2016.
[38]C. Y. Leea, S. J. Leea, C. H. Chenb, C. L. Hsiehc, S. H. Wena, C. W. Chiua and C. A. Jiang, “Internal real-time microscopic diagnosis of vanadium redox flowbattery, ” Sensors and Actuators A: Physical, vol. 314, pp. 1-7, 2020.
[39]A. Trov`o and M. Guarnieri, “Standby thermal management system for a kW-class vanadium redox flow battery, ” Energy Conversion and Management, vol. 226, pp. 1-12, 2020.
[40]J. Ye, D. Yuan, M. Ding, Y. Long, T. Long, L. Sun and C. Jia, “A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery, ” Journal of Power Sources, vol. 482, pp. 1-8, 2020.
[41]L. Wei, X. Z. Fan, H. R. Jiang, K.Liu, M.C. Wu and T. S. Zhao, “Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method, ” Journal of Power Sources, vol. 478, pp. 1-9, 2020.
[42]L. Cao, M. S. Kazacos, C. Menictas and J. Noack, “A review of electrolyte additives and impurities in vanadium redox flow batteries, ” Journal of Energy Chemistry, vol. 27, pp. 1269-1291, 2018.
[43]T. Jirabovornwisut and A. Arpornwichanop, “A review on the electrolyte imbalance in vanadium redox flow batteries, ” International Journal Of Hydrogen Eenergy, vol. 44, pp. 24485-24509, 2019.
[44]A. Fetyan, G. A. E. Nagar, I. Lauermann, M. Schnucklake, J. Schneider and C. Roth, “Detrimental role of hydrogen evolution and its temperature-dependent impact on the performance of vanadium redox flow batteries, ” Journal of Energy Chemistry, vol. 32, pp. 57-62, 2019.
[45]K. Ngamsai and A. Arpornwichanop, “Investigating the air oxidation of V(II) ions in a vanadium redox flow battery, ” Journal of Power Sources, vol. 295, pp. 292-298, 2015.
[46]T. Haisch, H. Ji and C. Weidlich, “Monitoring the state of charge of all-vanadium redox flow batteries to identify crossover of electrolyte, ” Electrochimica Acta, vol. 336, pp. 1-8, 2020.
[47]E. Agar, “Species Transport Mechanisms Governing Crossover and Capacity Loss in Vanadium Redox Flow Batteries, ” Doctoral Dissertation, Department of Philosophy, Drexel University College, pp. 1-178, 2014.
[48]R. M. Darling, A. Z. Weber, M. C. Tucker and M. L. Perryb, “The Influence of Electric Field on Crossover in Redox-Flow Batteries, ” Journal of The Electrochemical Society, vol. 163, no. 1, pp. 5014-5022, 2016.
[49]Q. Luo, L. Li, Z. Nie, W. Wang, X. Wei, B. Li, B. Chen and Z. Yang, “In-situ investingation of vanadium ion transport in redox flow battery, ” Journal of Power Sources, vol. 218, pp. 15-20, 2012.
[50]X. G. Yang, Q. Ye, P .Cheng and T. S. Zhao, “Effects of the electric field on ion crossover in vanadium redox flow batteries Xiao-Guang Yang, ” Applied Energy, vol. 145, pp. 306-319, 2015.
[51]Y. Shia, C. Ezea, B. Xiongb, W. Hec, H. Zhangd, T. M. Lime, A. Ukilf and J. Zhao, “Recent development of membrane for vanadium redox flow battery applications: A review, ” Applied Energy, vol. 238, pp. 202-224, 2019.
[52]S. C. CENG, “Membrane Processes And Membrane Modification For Redox Flow Battery Applications., ” Doctoral Dissertation, Department of Chemical Engineering and Industrial Chemistry, University of New South Wales, pp. 1-379, 1993.
[53]楊銘乾,行政院原子能委員會委託研究計畫研究期末報告,自製多孔膜應用於液流電池隔離膜之研究,2016。
[54]J. Sun, D. Shi, H. Zhong, X. Li and H. Zhang, “Investigations on the self-discharge process in vanadium flow battery, ”Journal of Power Sources, vol. 294, pp. 562-568, 2015.
[55]T. Mohammadi, S. C. Chieng and M. S. Kazacos, “Water transport study across commercial ion exchange membranes in the vanadium redox flow battery, ” Journal of Energy Chemistry, vol. 133, pp. 151-159, 1997.
[56]T. Sukkar and M. S. Kazacos, “Water transfer behaviour across cation exchange membranes in the vanadium redox battery, ” Journal of Membrane Science, vol. 222, pp. 235-247, 2003.
[57]C. Suna, J. Chena, H. Zhanga, X. Hana and Q. Luo, “Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery, ” Journal of Power Sources, vol. 195, pp. 890-897, 2010.
[58]K. Oh, M. Moazzam, G. Gwak and H. Ju, “Water crossover phenomena in all-vanadium redox flow batteries, ” Electrochimica Acta, vol. 297, pp. 101-111, 2019.
[59]H. W. M. Osman, A. B. A. Nabi and K. H. Billal, “Optical Fiber Review, ” Journal of Electrical & Electronic Systems, vol. 7, no. 1, pp. 1-4, 2018.
[60]S. Addankia, I. S. Amirib and P. Yupapin, “Review of optical fibers-introduction and applications in fiber lasers, ” Results in Physics, vol. 10, pp. 743-750, 2018.
[61]呂洋,飛秒雷射加工之微雙孔洞中空光纖Fabry-Perot干涉儀,國立聯合大學,碩士論文,2018。
[62]R. Bauld, D. Y. William, P. Bazylewski and R. Divigalpitiya, “Thermo-optical characterization and thermal properties of graphenepolymer composites: A review, ” Journal of Materials Chemistry C, vol. 6, pp. 1-13, 2017.
[63]C. H. Hsueh, C. R. Luttrell and T. Cui, “Thermal stress analyses of multilayered films on substrates and cantilever beams for micro sensors and actuators, ” Journal Of Micromechanics And Microengineering, vol. 16, pp. 2509-2515, 2006.
[64]https://www.thorlabs.com/NewGroupPage9_PF.cfm?ObjectGroup_ID=196,NOA65 datashit.
[65]FFT, https://towardsdatascience.com/fast-fourier-transform-937926e591cb.
[66]C. L. Phillips , J. M. Parr , E. A. Riskin, Signals, Systems,and Transforms, fifth edition.

電子全文 電子全文(網際網路公開日期:20270523)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top