[1]REN21 , “Renewables 2021 Global Status Report, ” pp. 1-371, 2021.
[2]經濟部能源局,https://www.moeaboe.gov.tw/ECW/populace/Law/Content. aspx?menu_id=13206,一定契約容量以上之電力用戶應設置再生能源發電設備管理辦法。
[3]X. Fan , B. Liu , J. Liu , J. Ding, X. Han , Y.Deng , X. Lv , Y. Xie , B. Chen,W. Hu and C.Zhong, “Battery Technologies for Grid‑Level Large‑Scale Electrical Energy Storage, ”Transactions of Tianjin University, vol. 26 , pp. 92–103, 2020.
[4]Asian Development Bank , “Handbook On Battery Energy Storage System, “pp. 1-94, 2018.
[5]https://www.fsp-group.com/tw/knowledge-prd-44.html,近年來潛能無限的儲能系統解決方案,FSP。(accesses on 2022/01/10)
[6]K. Lourenssen , J. Williams , F. Ahmadpour , R. Clemmer and S. Tasnim, “ Vanasium redox flow batteries: A comprehensive review, ” Journal of Energy Storage, vol. 25, pp. 1-17, 2019.
[7]D. Mazzeo, “Solar and wind assisted heat pump to meet the building air conditioning and electric energy demand in the presence of an electric vehicle charging station and battery storage, ” Journal of Cleaner Production, vol. 213, pp. 1228-1250, 2019.
[8]https://reneweconomy.com.au/victorian-dairy-targets-100-renewables-with-solar-vanadium-flow-battery-68551/, Victorian dairy targets 100% renewables with solar vanadium flow battery, Renew Economy. (accesses on 2022/01/12)
[9]http://www.escn.com.cn/news/show-1312999.html,韓國H2公司計劃在加利福尼亞州部署液流電池儲能係統,中國儲能網。(accesses on 2022/01/12)
[10]https://chuneng.bjx.com.cn/news/20201201/1119256.shtml,美國加州消防局部署全釩液流儲能電池證長效非鋰儲能技術,北極星儲能網。(accesses on 2022/01/12)
[11]https://money.udn.com/money/story/122359/5637105?from=edn_hotlist_storybottom,住友全釩液流電池系統長效型儲能首選,經濟日報。(accesses on 2022/01/12)
[12]Y. Zhang , L. Liu , J. Xi , Z. Wua and X. Qiu,“ The benefits and limitations of electrolyte mixing in vanadium flow batteries, ”Applied Energy, vol. 204, pp. 373-381, 2017.
[13]A. Bhattaraia, N. Waib, R.Schweissc, A. Whiteheadd, G. G. Scherere, P. C. Ghimireb, T. M. Limg and H. H. Hngh, “Vanadium redox flow battery with slotted porous electrodes and automaticrebalancing demonstrated on a 1 kW system level, ”Applied Energy, vol. 236, pp. 437-443, 2019.
[14]A. Bhattarai, P. C. Ghimire, A.Whitehead, R. Schweiss, G. G. Scherer, N. Wai and H.H.Hng, “Novel Approaches for Solving the Capacity Fade Problem during Operation of a Vanadium Redox Flow Battery, ” ResearchGate, vol.4, no. 48, pp. 1-9, 2018.
[15]N. Polia, M.Schäfferc, A. Trovòa, J. Noackc, M. Guarnieria and P. Fischerc, “Novel electrolyte rebalancing method for vanadium redox flow batteries, ” Chemical Engineering Journal, vol. 405, pp. 1-13, 2021.
[16]Z. Li , L. Liu ,Y. Zhao, J. Xi , Z. Wu and X. Qiu, “The indefinite cycle life via a method of mixing and online electrolysis for vanadium redox flow batteries, ” Chemical Engineering Journal, vol. 438, pp. 1-8, 2019.
[17]S. K. Hee, J. C. Soo, S. J. Young, P. S. Kook, K. D. Ha and Y. S.Hwa, “Real-time monitoring of the state of charge (SOC) in vanadium redox-flow batteries using UV–Vis spectroscopy in operando mode, ”Journal of Energy Storage, vol. 27, pp. 1-12, 2020.
[18]N. Roznyatovskaya, T. Herr, M. Küttinger, M.Fühl, J. Noack, K. Pinkwart and J. Tübke, “Detection of capacity imbalance in vanadium electrolyte and its electrochemical regeneration for all-vanadium redox-flow batteries, ”Journal of Power Sources, vol. 302, pp. 79-83, 2016.
[19]W. Zhang, L. Liu and L. Liua, “An on-line spectroscopic monitoring system for the electrolytes in vanadium redox flow batteries, ”Royal Society Of Chemistry, pp. 100235-100243, 2015.
[20]S. Rudolph, U. Schröder, I. M. Bayanov, K. Blenke and D. Hage, “High resolution state of charge monitoring of vanadium electrolytes with IR optical sensor, ”Journal of Electroanalytical Chemistry, vol.694, pp. 17-22, 2013.
[21]K .Maa, X. Kuanga, L. Liua, Y. Zhanga, Y. Sunb, J. Xia, Y. Hec and D. Lie, “An optimized angular total internal reflection sensor with high resolution in vanadium flow batteries, ”IEEE Transactions on Instrumentation and Measurement, vol. 69, No. 6, pp. 1-20, 2020.
[22]S. Corcuera and M. S. Kazacos, “State-Of-Charge Monitoring And Electrolyte Rebalancing Methords For The Vanaditum Redox Flow Battery, ”European Chemical Bulletin, vol. 1, No. 12, pp. 511-519, 2012.
[23]X. Li, J. Xiong, A.Tang, Y.Qin, J.Liu and C.Yan, “Investigation of the use of electrolyte viscosity for online state-of-charge monitoring design in vanadium redox flow battery, ”Applied Energy, vol. 211, pp. 1050-1059, 2018.
[24]K. Ngamsai and A .Arpornwichanop, “Analysis and measurement of the electrolyte imbalance in a vanadium redox flow battery, ”Journal of Power Sources, vol. 282, pp. 534-543, 2015.
[25]K. Beyer, J. g. Austing, B. Satola, T. D. Nardo, M. Zobel and C. Agert, “Electrolyte Imbalance Determination of a Vanadium Redox Flow Battery by Potential-Step Analysis of the Initial Charging, ”ChemSusChem, vol. 13, pp. 2066-2071, 2020.
[26]K. Ngamsai, A. Arpornwichanop, “Measuring the state of charge of the electrolyte solution in a vanadium redox flow battery using a four-pole cell device, ”Journal of Power Sources, vol. 298, pp. 150-157, 2015.
[27]張秀麗,吳濤,王應高,李永立,王娜,郝承磊,馬茜,一種全釩液流電池SOC檢測方法及系統,中華人民共和國國家知識產權局,2013。
[28]H. Zhanga, Y. Tana, J. Lia and B. Xuea, “Studies on properties of rayon- and polyacrylonitrile-based graphite felt electrodes affecting Fe/Cr redox flow battery performance, ” Electrochimica Acta, vol. 248, pp. 603-613, 2017.
[29]R .Kima, S. Yuka, J. H. Leea, C.Choia, S. Kima, J. Heoa, H. T. Kima, “Scaling the water cluster size of Nafion membranes for a high performance Zn/Br redox flow battery, ” Journal of Membrane Science, vol. 564, pp. 852-858, 2018.
[30]K. Mariyappan, R. Velmurugan, B. Subramanian, P. Ragupathy and M. Ulaganathan, “Low loading of Pt@Graphite felt for enhancing multifunctional activity towards achieving high energy efficiency of Zn–Br2 redox flow battery, ”Journal of Power Sources, vol. 482, pp. 1-10, 2020.
[31]Z. Xiea, B.Liua, C. Xiec, B. Yanga, Y. Jiaoa, D. Caia, L. Yanga, Q. Shua and A. Shia, “Che mically reduced graphene oxide paper as positive electrode for advanced Zn/Ce redox flow battery, ”Materials Chemistry and Physics, vol. 220, pp. 208-215, 2018.
[32]K. Amini and M. D. Pritzker, “In situ polarization study of zinc–cerium redox flow batteries, ” Journal of Power Sources, vol. 471, pp. 1-9, 2020.
[33]M. Nandanwara and S. Kumarb, “A modelling and simulation study of soluble lead redox flow battery: Effect of presence of free convection on the battery characteristics, ”Journal of Power Sources, vol. 412, pp. 536-544, 2019.
[34]M. N. Nandanwar, K. S. Kumar, S. S. Srinivas and D. M. Dinesh, “Pump-less, free-convection-driven redox flow batteries: Modelling, simulation, and experimental demonstration for the soluble lead redox flow battery, ” Journal of Power Sources, vol. 454, pp. 1-10, 2020.
[35]K. Lourenssen, J. Williams, F. Ahmadpour, R.Clemmer and S.Tasnim, “Vanadium redox flow batteries: A comprehensive review, ” Journal of Energy Storage, vol. 25, pp. 1-17, 2019.
[36]Y. Li, X. Zhang, J. Bao and M. S. Kazacos, “Studies on optimal charging conditions for vanadium redox flow batteries, ” Journal of Energy Storage, vol. 11, pp. 191-199, 2017.
[37]S. Roe, C. Menictas and M. S. Kazacosa, “High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte, ” Journal of The Electrochemical Society, vol. 163, no. 1, pp. 5023-5028, 2016.
[38]C. Y. Leea, S. J. Leea, C. H. Chenb, C. L. Hsiehc, S. H. Wena, C. W. Chiua and C. A. Jiang, “Internal real-time microscopic diagnosis of vanadium redox flowbattery, ” Sensors and Actuators A: Physical, vol. 314, pp. 1-7, 2020.
[39]A. Trov`o and M. Guarnieri, “Standby thermal management system for a kW-class vanadium redox flow battery, ” Energy Conversion and Management, vol. 226, pp. 1-12, 2020.
[40]J. Ye, D. Yuan, M. Ding, Y. Long, T. Long, L. Sun and C. Jia, “A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery, ” Journal of Power Sources, vol. 482, pp. 1-8, 2020.
[41]L. Wei, X. Z. Fan, H. R. Jiang, K.Liu, M.C. Wu and T. S. Zhao, “Enhanced cycle life of vanadium redox flow battery via a capacity and energy efficiency recovery method, ” Journal of Power Sources, vol. 478, pp. 1-9, 2020.
[42]L. Cao, M. S. Kazacos, C. Menictas and J. Noack, “A review of electrolyte additives and impurities in vanadium redox flow batteries, ” Journal of Energy Chemistry, vol. 27, pp. 1269-1291, 2018.
[43]T. Jirabovornwisut and A. Arpornwichanop, “A review on the electrolyte imbalance in vanadium redox flow batteries, ” International Journal Of Hydrogen Eenergy, vol. 44, pp. 24485-24509, 2019.
[44]A. Fetyan, G. A. E. Nagar, I. Lauermann, M. Schnucklake, J. Schneider and C. Roth, “Detrimental role of hydrogen evolution and its temperature-dependent impact on the performance of vanadium redox flow batteries, ” Journal of Energy Chemistry, vol. 32, pp. 57-62, 2019.
[45]K. Ngamsai and A. Arpornwichanop, “Investigating the air oxidation of V(II) ions in a vanadium redox flow battery, ” Journal of Power Sources, vol. 295, pp. 292-298, 2015.
[46]T. Haisch, H. Ji and C. Weidlich, “Monitoring the state of charge of all-vanadium redox flow batteries to identify crossover of electrolyte, ” Electrochimica Acta, vol. 336, pp. 1-8, 2020.
[47]E. Agar, “Species Transport Mechanisms Governing Crossover and Capacity Loss in Vanadium Redox Flow Batteries, ” Doctoral Dissertation, Department of Philosophy, Drexel University College, pp. 1-178, 2014.
[48]R. M. Darling, A. Z. Weber, M. C. Tucker and M. L. Perryb, “The Influence of Electric Field on Crossover in Redox-Flow Batteries, ” Journal of The Electrochemical Society, vol. 163, no. 1, pp. 5014-5022, 2016.
[49]Q. Luo, L. Li, Z. Nie, W. Wang, X. Wei, B. Li, B. Chen and Z. Yang, “In-situ investingation of vanadium ion transport in redox flow battery, ” Journal of Power Sources, vol. 218, pp. 15-20, 2012.
[50]X. G. Yang, Q. Ye, P .Cheng and T. S. Zhao, “Effects of the electric field on ion crossover in vanadium redox flow batteries Xiao-Guang Yang, ” Applied Energy, vol. 145, pp. 306-319, 2015.
[51]Y. Shia, C. Ezea, B. Xiongb, W. Hec, H. Zhangd, T. M. Lime, A. Ukilf and J. Zhao, “Recent development of membrane for vanadium redox flow battery applications: A review, ” Applied Energy, vol. 238, pp. 202-224, 2019.
[52]S. C. CENG, “Membrane Processes And Membrane Modification For Redox Flow Battery Applications., ” Doctoral Dissertation, Department of Chemical Engineering and Industrial Chemistry, University of New South Wales, pp. 1-379, 1993.
[53]楊銘乾,行政院原子能委員會委託研究計畫研究期末報告,自製多孔膜應用於液流電池隔離膜之研究,2016。
[54]J. Sun, D. Shi, H. Zhong, X. Li and H. Zhang, “Investigations on the self-discharge process in vanadium flow battery, ”Journal of Power Sources, vol. 294, pp. 562-568, 2015.
[55]T. Mohammadi, S. C. Chieng and M. S. Kazacos, “Water transport study across commercial ion exchange membranes in the vanadium redox flow battery, ” Journal of Energy Chemistry, vol. 133, pp. 151-159, 1997.
[56]T. Sukkar and M. S. Kazacos, “Water transfer behaviour across cation exchange membranes in the vanadium redox battery, ” Journal of Membrane Science, vol. 222, pp. 235-247, 2003.
[57]C. Suna, J. Chena, H. Zhanga, X. Hana and Q. Luo, “Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery, ” Journal of Power Sources, vol. 195, pp. 890-897, 2010.
[58]K. Oh, M. Moazzam, G. Gwak and H. Ju, “Water crossover phenomena in all-vanadium redox flow batteries, ” Electrochimica Acta, vol. 297, pp. 101-111, 2019.
[59]H. W. M. Osman, A. B. A. Nabi and K. H. Billal, “Optical Fiber Review, ” Journal of Electrical & Electronic Systems, vol. 7, no. 1, pp. 1-4, 2018.
[60]S. Addankia, I. S. Amirib and P. Yupapin, “Review of optical fibers-introduction and applications in fiber lasers, ” Results in Physics, vol. 10, pp. 743-750, 2018.
[61]呂洋,飛秒雷射加工之微雙孔洞中空光纖Fabry-Perot干涉儀,國立聯合大學,碩士論文,2018。[62]R. Bauld, D. Y. William, P. Bazylewski and R. Divigalpitiya, “Thermo-optical characterization and thermal properties of graphenepolymer composites: A review, ” Journal of Materials Chemistry C, vol. 6, pp. 1-13, 2017.
[63]C. H. Hsueh, C. R. Luttrell and T. Cui, “Thermal stress analyses of multilayered films on substrates and cantilever beams for micro sensors and actuators, ” Journal Of Micromechanics And Microengineering, vol. 16, pp. 2509-2515, 2006.
[64]https://www.thorlabs.com/NewGroupPage9_PF.cfm?ObjectGroup_ID=196,NOA65 datashit.
[65]FFT, https://towardsdatascience.com/fast-fourier-transform-937926e591cb.
[66]C. L. Phillips , J. M. Parr , E. A. Riskin, Signals, Systems,and Transforms, fifth edition.