|
[1] WHO心血管疾病文獻,取自網路: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) [2] S. K. Gardezi, S. G. Myerson, J. Chambers, S. Coffey, J. d’Arcy, et al., “Cardiac auscultation poorly predicts the presence of valvular heart disease in asymptomatic primary care patients”, Heart, vol. 104, pp. 1832-1835. May, 2018. [3] 心臟雜音相關資訊: https://doctor.get.com.tw/m/Journal/detail.aspx?no=406299 [4] M. Morshed, S. A. Fattah and M. Saquib, “Automated Heart Valve Disorder Detection Based on PDF Modeling of Formant Variation Pattern in PCG Signal”, IEEE Access, vol. 10, pp. 27330-27342, March, 2022. [5] S. Sun, H. Wang, C. Cheng, Z. Chang and D. Huang, “PCA-based heart sound feature generation for a ventricular septal defect discrimination”, 2017 14th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 2017, pp. 128-133. [6] C. D. Papadaniil and L. J. Hadjileontiadis, “Efficient Heart Sound Segmentation and Extraction Using Ensemble Empirical Mode Decomposition and Kurtosis Features”, in IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 4, pp. 1138-1152, July, 2014. [7] M. Deng, T. Meng, J. Cao, S. Wang, J. Zhang, & H. Fan, (2020). “Heart sound classification based on improved MFCC features and convolutional recurrent neural networks”, Neural Networks, vol. 130, pp. 22-32. October, 2020. [8] H. Liang, S. Lukkarinen and I. Hartimo, “Heart sound segmentation algorithm based on heart sound envelogram,” Computers in Cardiology 1997, 1997, pp. 105-108. [9] Q. Liu, X. Wu, & X. Ma, “An automatic segmentation method for heart sounds”, Biomedical engineering online, vol. 17, no. 106, July, 2018. [10] A. Bouril, D. Aleinikava, M. S. Guillem and G. M. Mirsky, “Automated classification of normal and abnormal heart sounds using support vector machines”, 2016 Computing in Cardiology Conference (CinC), 2016, pp. 549-552. [11] F. A. Khan, A. Abid, M. S. Khan. “Automatic heart sound classification from segmented/unsegmented phonocardiogram signals using time and frequency features”, Physiological measurement, vol. 41, no. 5, June, 2020. [12] D. Kumar, P. Carvalho, M. Antunes, R. P. Paiva and J. Henriques, “Heart murmur classification with feature selection”, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010, pp. 4566-4569. [13] V. Arora, R. Leekha, R. Singh, & I. Chana, “Heart sound classification using machine learning and phonocardiogram”, Modern Physics Letters B, vol. 33, no. 26. August, 2019. [14] T. Fernando, H. Ghaemmaghami, S. Denman, S. Sridharan, N. Hussain and C. Fookes, “Heart Sound Segmentation Using Bidirectional LSTMs With Attention”, in IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 6, pp. 1601-1609. October, 2019. [15] M. Bahreini, R. Barati, & A. Kamaly, (2022). “Heart Sound Classification Based on Fractal Dimension and MFCC Features Using Hidden Markov Model”, January, 2022. [16] S. I. Khan and V. Ahmed, “Classification of pulmonary crackles and pleural friction rubs using MFCC statistical parameters”, 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 2016, pp. 2437-2440.
[17] M. Rahmandani, H. A. Nugroho and N. A. Setiawan, “Cardiac Sound Classification Using Mel-Frequency Cepstral Coefficients (MFCC) and Artificial Neural Network (ANN)”, 2018 3rd International Conference on Information Technology, Information System and Electrical Engineering (ICITISEE), 2018, pp. 22-26. [18] D. Kurniadi, Y. Kung, Z. Chen, Y. Li, Hendrick and G. Jong, “Implemented the expert system of heart disease by using SVM”, 2018 IEEE International Conference on Applied System Invention (ICASI), 2018, pp. 605-608. [19] S. A. Singh, & S. Majumder, “Classification of unsegmented heart sound recording using KNN classifier”, Journal of Mechanics in Medicine and Biology, vol. 19, no. 04, June, 2019. [20] M. Zubair, “A Peak Detection Algorithm for Localization and Classification of Heart Sounds in PCG Signals using K-means Clustering”, August, 2021. [21] Z. Tariq, S. K. Shah, & Y. Lee, “Feature-based Fusion using CNN for Lung and Heart Sound Classification”, Sensors, vol.22, no. 4, December, 2021. [22] C. Lubis, & F. Gondawijaya, “Heart sound diagnose system with BFCC, MFCC, and backpropagation neural network”, In IOP conference series: materials science and engineering, vol. 508, no. 1, pp. 012119. April, 2019. [23] C. Liu, D. Springer, Q. Li, B. Moody, R. A. Juan, F. J. Chorro, F. Castells, J. M. Roig, I. Silva, A. E. Johnson, and Z. Syed, “An open access data base for the evaluation of heart sound algorithms”, Physiological measurement, vol. 37, no. 12, pp. 2181-2213. December, 2016. [24] A. Goldberger, L. Amaral, L. Glass, J. Hausdorff, P. C. Ivanov, R. Mark, ... & H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals”, Circulation, vol. 101, no. 23, pp. e215-e220. June, 2000. [25] D. B. Springer, L. Tarassenko and G. D. Clifford, “Logistic Regression-HSMM-Based Heart Sound Segmentation”, in IEEE Transactions on Biomedical Engineering, vol. 63, no. 4, pp. 822-832. April, 2016. [26] P. Laguna, R. Jané, and P. Caminal, “Automatic detection of wave boundaries in multilead ECG signals: validation with the CSE database”, Computers and Biomedical Research, vol. 27, 1994, pp. 45-60. February, 1994. [27] A. Demski, & M. L. Soria, “ecg-kit: a Matlab toolbox for cardiovascular signal processing”, Journal of open research software, vol. 4, no. 1, April, 2016. [28] A. N. Vest, G. D. Poian, Q. Li, C. Liu, S. Nemati, A. J. Shah, & G. D. Clifford, “An open source benchmarked toolbox for cardiovascular waveform and interval analysis”, Physiological measurement, vol. 39, no. 10, October, 2018. [29] N. Pilia, C. Nagel, G. Lenis, S. Becker, O. Dössel, A. Loewe, “ECGdeli - An open source ECG delineation toolbox for MATLAB”, SoftwareX, Vol. 13, January, 2021. [30] 心電圖週期標註點示意圖,取自網路: https://reurl.cc/k1x60x [31] G. Lenis, N. Pilia, T. Oesterlein, A. Luik, C. Schmitt, and O. Dössel, “P wave detection and delineation in the ECG based on the phase free stationary wavelet transform and using intracardiac atrial electrograms as reference”, Biomedical Engineering / Biomedizinische Technik, vol. 61, no. 1, pp. 37-56. February, 2016. [32] 基於邏輯回歸的隱藏半馬爾可夫心音分割工具箱: https://physionet.org/content/hss/1.0/ [33] D. Gill, N. Gavrieli and N. Intrator, “Detection and identification of heart sounds using homomorphic envelogram and self-organizing probabilistic model”, Computers in Cardiology, 2005, 2005, pp. 957-960. [34] A. Thalmayer, S. Zeising, G. Fischer, J. Kirchner, “A Robust and Real-Time Capable Envelope-Based Algorithm for Heart Sound Classification: Validation under Different Physiological Conditions”, Sensors, vol. 20, no. 4, February, 2020. [35] H. Tang, M. Wang, Y. Hu, B. Guo, & T. Li, “Automated Signal Quality Assessment for Heart Sound Signal by Novel Features and Evaluation in Open Public Datasets”, BioMed Research International, 2021, February, 2021. [36] Liang Huiying, L. Sakari and H. Iiro, “A heart sound segmentation algorithm using wavelet decomposition and reconstruction”, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 'Magnificent Milestones and Emerging Opportunities in Medical Engineering' (Cat. No.97CH36136), 1997, pp. 1630-1633. [37] S. E. Schmidt, et al., “Segmentation of heart sound recordings by a duration-dependent hidden Markov model.” Physiological Measurement, vol. 31, no. 4, pp. 513-29, April, 2010. [38] L. Rabiner, “A tutorial on hidden Markov models and selected applications in speech recognition,” Proceedings of the IEEE, vol. 77, no. 2, pp. 257-286, February, 1989. [39] T. Masuko, K. Tokuda, T. Kobayashi and S. Imai, “Voice characteristics conversion for HMM-based speech synthesis system,” 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1997, pp. 1611-1614. [40] J. A. Venkidasalapathy, & C. Kravaris, “Hidden markov model based approach for diagnosing cause of alarm signals”, AIChE Journal, vol.67, no. 10, May, 2021. [41] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory”, in Neural Computation, vol. 9, no. 8, pp. 1735-1780, November, 1997. [42] A. J. Gaona, P. D. Arini, “Deep Recurrent Learning for Heart Sounds Segmentation based on Instantaneous Frequency Features”, Elektron: ciencia y tecnología en la electrónica de hoy, vol. 4, no. 2, pp. 52-57, October, 2020. [43] 香濃熵,取自網路: https://baike.baidu.hk/item/%E9%A6%99%E8%BE%B2%E7%86%B5/1649961 [44] 譜熵,取自網路: https://baike.baidu.com/item/%E8%B0%B1%E7%86%B5/22689242 [45] 梅爾頻率倒譜係數介紹,取自網路: https://zh.wikipedia.org/wiki/梅爾頻率倒譜係數 [46] D. M. Tax, R. P. Duin, “Support Vector Data Description”, Machine Learning, vol. 54, pp.45–66, January, 2004. [47] Y. Zhao, S. Wang, F. Xiao, “Pattern recognition-based chillers fault detection method using Support Vector Data Description (SVDD)”, Applied Energy, Vol. 112, pp. 1041-1048, December, 2013. [48] G. D. Clifford et al., “Classification of normal/abnormal heart sound recordings: The PhysioNet/Computing in Cardiology Challenge 2016”, 2016 Computing in Cardiology Conference (CinC), 2016, pp. 609-612. [49] S. C. Oliveira, E. F. Gomes, and A. M. Jorge, “Heart sounds classification using motif based segmentation”, In Proceedings of the 18th International Database Engineering & Applications Symposium, 2014, pp. 370-371. [50] M. Zabihi, A. B. Rad, S. Kiranyaz, M. Gabbouj and A. K. Katsaggelos, “Heart sound anomaly and quality detection using ensemble of neural networks without segmentation”, 2016 Computing in Cardiology Conference (CinC), 2016, pp. 613-616. [51] E. Kay and A. Agarwal, “DropConnected neural network trained with diverse features for classifying heart sounds”, 2016 Computing in Cardiology Conference (CinC), 2016, pp. 617-620.
|