跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 12:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊傑
研究生(外文):HUANG, JUN-JIE
論文名稱:我國市售米與麵條包裝食品二苯甲酮類分析及健康風險評估
論文名稱(外文):Analysis of benzophenone and its derivatives in commercially rice and noodle packaged foods in Taiwan and health risk assessment
指導教授:黃鈺芳黃鈺芳引用關係
指導教授(外文):HUANG, YU-FANG
口試委員:陳美蓮陳鑫昌
口試委員(外文):CHEN, MEI-LIENCHEN, HSIN-CHANG
口試日期:2022-06-28
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:113
中文關鍵詞:米飯與麵條食品二苯甲酮類物質固液萃取超高效液相層析串聯質譜儀健康風險評估
外文關鍵詞:Rice and noodlesBenzophenone and its derivativesSolid-liquid extractionUltra high performance liquid chromatography tandem mass spectrometryHealth risk assessment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
前言:二苯甲酮類(Benzophenones, BPs)物質包含二苯甲酮(Benzophenone, BP)及其衍生物,BPs具內分泌干擾性與生殖毒性,BP為人類可能致癌物,BPs用於固化塑膠包裝材料與油墨以及食品調味劑添加等,因此BPs經由包裝材料遷移至食品或者食品存在BPs,人體可能經飲食暴露BPs,米飯與麵條為我國主食且攝食量較高,因此本研究探討國人經攝食米飯與麵條類食品暴露BPs濃度及健康風險。
方法:依攝食資料庫攝食量分配米飯與麵條採集比例,樣品共80件,一般米飯28件、複合米飯22件、一般麵條14件與複合麵條16件,購買地點為超市並分析熟重;比較四種前處理方法,固液萃取、固相萃取、QuEChERS及FaPEx,搭配超高效液相層析串聯質譜儀(UHPLC-MS/MS)分析米飯與麵條食品中BP及10種BP衍生物(BP-1、BP-2、BP-3、BP-4、BP-8、2-OHBP、4-OHBP、4-MBP、PBZ與M2BB),並進行方法確效;以變異數分析探討BPs濃度與脂肪含量、包裝材質、是否微波等因子相關性;以蒙地卡羅模擬法計算國人經飲食米飯與麵條食品每人每日BPs暴露劑量、致癌風險與危害商數代表非致癌風險。
結果:前處理方法比較如下,背景值:固液萃取<固相萃取< QuEChERS ≃ FaPEx,萃取率:固相萃取< FaPEx< QuEChERS ≃固液萃取,精密度:固液萃取≃固相萃取< QuEChERS < FaPEx,選擇具較低背景值、較佳萃取率與較低精密度之方法因此,以固液萃取作為前處理方法;偵測極限與定量極限分別為0.01-1及0.02-2 ng/g,檢量線線性皆大於 0.995,精密度 1-29 %,準確度 56–125 %,背景低於定量極限訊號40%,洗出時間± 2.5%內,離子比例± 20%內;80件樣本檢出率與濃度範圍,BP:89%,0.4-7.4 ng/g,2-OHBP:25%,0.4-6.6 ng/g,4-OHBP:1%,0.4-1.4 ng/g,4-MBP:14%,0.4-1.5 ng/g,其他7種BPs皆低於偵測極限;複合米飯與麵條食品脂肪含量與BP濃度具顯著(p = 0.006)且正相關;國人八個年齡層經飲食米飯與麵條類食品暴露BP每日暴露劑量中位數為0.7-8.1 ng/kg/day,致癌風險中位數為2E-09–6E-08,非致癌風險為2E-05–4E-04。
結論:完成米飯與麵條類食品中BPs分析方法建立與方法確效,並應用於樣品分析,0-6歲孩童攝食米飯與麵條類食品每人每日BP劑量為國人八個年齡層中最高,國人致癌風險皆低於1E-06,非致癌風險皆低於1,以上顯示國人經攝食米飯與麵條類食品暴露BP之風險可接受。

Introduction: Benzophenone and its derivatives (BPs) are endocrine disruptors and reproductive toxicants, among which, BP is classified as a human possible carcinogen. BPs are used for curing plastic packaging materials and inks as well as adding flavoring to food, so BPs may migrate from packaging materials to food or BPs may exist in food, and humans may be exposed to BPs through diet. Since rice and noodles are staple foods and their intake is relatively high, this study investigated the exposure to BPs and health risks of rice and noodles consumption Taiwan.
Methods: Based on the Nutrition and Health Surveys in Taiwan (NAHSIT), 80 cereal-based samples (28 general rice, 22 composite rice, 14 general noodles, and 16 composite noodles) were collected and purchased from supermarkets and analyzed for cooked weight. Four pretreatment methods, namely solid-liquid extraction(SLE), solid-phase extraction (SPE), QuEChERS and FaPEx were compared and analyzed using ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Residues of BP and 10 BPs (BP-1, BP-2, BP-3, BP-4, BP-8, 2-OHBP, 4-OHBP, 4-MBP, PBZ and M2BB) were measured. Analysis of variance (ANOVA) was used to explore the correlation between BPs concentration and fat content, packaging material, and with and without microwave. The estimated daily intakes, carcinogenic risks, and non-carcinogenic risks (hazard quotient, HQ) were predicted for eight age groups by using Monte Carlo simulation.
Results: The pretreatment methods were compared as follows, background: SLE < SPE < QuEChERS ≃ FaPEx, extraction rates: SPE < FaPEx < QuEChERS SLE, precision: SLE ≃ SPE < QuEChERS < FaPEx. SLE was selected for the pretreatment method with low background and precision, and high extraction rate. The limits of detections (LODs) and limits of quantifications (LOQs) of BPs for rice and noodles were 0.01-1 and 0.02-2 ng/g, respectively. All analytes exhibited good linearity (r2 > 0.995); the mean precision and accuracy ranges were 1%-29% and 56%-125%, respectively. The background was less than 40% of the LOQs, washout time within ± 2.5%, ion ratio within ± 20%. Of the 11 analytes, 7 were detected below LODs. BP, 2-OHBP, 4-OHBP, and 4-MBP were detected in 89%, 25%, 1% and 14%, respectively, and the ranges were 0.4-7.4 ng/g, 0.4-6.6 ng/g, 0.4-1.4 ng/g and 0.4-1.5 ng/g. A significant correlation was found between fat content and BP level (p = 0.006), in complex rice and noodle foods,. The median of the daily intakes of BP for rice and noodles was 0.7-8.1 ng/kg/day, and the median cancer risk was 2E-09 to 6E-08, and the HQ was 2E-05 to 4E-04.
Conclusion: We developed and validated SLE method involving UHPLC-MS/MS to analyze BP and BPs in rice and noodles. Children (age 0-6 years) had the highest HI of BP among all age groups. The HQ of BP was less than 1 and cancer risk was less than 1E-06, indicating that BP intake through rice and noodles consumption is acceptable in Taiwanese people.

摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 viii
第一章 前言 1
1.1研究背景 1
1.2研究動機 2
1.3研究目的 3
1.4研究架構 4
第二章 文獻回顧 6
2.1 BPs物化性質、用途、毒理研究與管制 6
2.2 食品採樣 13
2.3 食品中BPs前處理與分析 15
2.4 不同因子與食品BPs濃度相關性 25
2.5 BPs風險評估 29
第三章 材料與方法 34
3.1材料 34
3.2採樣方法 38
3.3分析方法 42
3.4 BPs遷移溶出測試方法 51
3.5統計分析 52
3.6健康風險評估 53
第四章 結果與討論 57
4.1建立米飯與麵條BPs前處理方法 57
4.2米飯與麵條BPs方法品保與品管 62
4.3米飯與麵條中BPs濃度 71
4.4影響米飯與麵條食品中BP之因素 75
4.5健康風險評估 78
第五章 結論與建議 84
5.1結論 84
5.2建議 85
參考文獻 86
附錄一 樣品清單 95
附錄二 待測物訊號 100
An, D., Xing, X., Tang, Z., Li, Y., & Sun, J. (2022). Concentrations, distribution and potential health risks of organic ultraviolet absorbents in street dust from Tianjin, a megacity in northern China. Environmental Research, 204, 112130.
Anderson, W. A. C., & Castle, L. (2003). Benzophenone in cartonboard packaging materials and the factors that influence its migration into food. Food Additives & Contaminants, 20(6), 607-618.
Aparicio, J. L., & Elizalde, M. (2015). Migration of photoinitiators in food packaging: A review. Packaging Technology and Science, 28(3), 181-203.
Authority, E. F. S. (2009). General principles for the collection of national food consumption data in the view of a pan‐European dietary survey. EFSA journal, 7(12), 1435.
Barnkob, L. L., & Petersen, J. H. (2013). Effect of relative humidity on the migration of benzophenone from paperboard into the food simulant Tenax® and modelling hereof. Food Additives & Contaminants: Part A, 30(2), 395-402.
Biedermann, M., Ingenhoff, J.-E., Zurfluh, M., Richter, L., Simat, T., Harling, A., . . . Grob, K. (2013). Migration of mineral oil, photoinitiators and plasticisers from recycled paperboard into dry foods: a study under controlled conditions. Food Additives & Contaminants: Part A, 30(5), 885-898.
Bradley, E. L., Stratton, J. S., Leak, J., Lister, L., & Castle, L. (2013). Printing ink compounds in foods: UK survey results. Food Addit Contam Part B Surveill, 6(2), 73-83.
Bugey, A., Janin, Y., Edder, P., & Bieri, S. (2013). Targeted multidimensional gas chromatography using a heart-cutting device and cryogenic focusing for the determination of benzophenone derivatives in foodstuffs. Anal Bioanal Chem, 405(12), 4177-4185.
Careghini, A., Mastorgio, A. F., Saponaro, S., & Sezenna, E. (2015). Bisphenol A, nonylphenols, benzophenones, and benzotriazoles in soils, groundwater, surface water, sediments, and food: a review. Environmental Science and Pollution Research, 22(8), 5711-5741.
Carstensen, L., Beil, S., Börnick, H., & Stolte, S. (2022). Structure-related endocrine-disrupting potential of environmental transformation products of benzophenone-type UV filters: A review. Journal of Hazardous Materials, 430, 128495.
Chang, H.-C., Chen, Y.-J., Chang, M.-H., Liao, C.-D., Kao, Y.-M., Wang, D.-Y., & Cheng, H.-F. (2019). Novel multi-analyte method for detection of thirty photoinitiators in breakfast cereal and packaged juice. Journal of Chromatography B, 1130-1131, 121788.
Chen, M.-L., Chen, C.-H., Huang, Y.-F., Chen, H.-C., & Chang, J.-W. (2022). Cumulative Dietary Risk Assessment of Benzophenone-Type Photoinitiators from Packaged Foodstuffs. Foods, 11(2).
Michigan Department of Environmental Quality, July 10, 2015 Interoffice Communicationcollab Michigan Department of Environmental Quality File for Benzophenone (CAS No. 119-61-9) (July 10, 2015) http://www.deq.state.mi.us/aps/downloads/ATSL/119-61-9/119-61-9_annual_ITSL_IRSL.pd
Commission, E. (2011). Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union, 12, 1-89.
Concil of Europe-Report. (2009). Policy Statement Concerning paper and board materials and articles intended to come into contact with foodstuffs., 4, 21.
DiNardo, J. C., & Downs, C. A. (2018). Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone‐3. Journal of cosmetic dermatology, 17(1), 15-19.
Dodson, R. E., Boronow, K. E., Susmann, H., Udesky, J. O., Rodgers, K. M., Weller, D., . . . Rudel, R. A. (2020). Consumer behavior and exposure to parabens, bisphenols, triclosan, dichlorophenols, and benzophenone-3: Results from a crowdsourced biomonitoring study. International Journal of Hygiene and Environmental Health, 230, 113624.
ECHA. (2020). Information on Chemicals.
EFCOSUM, G. (2001). European Food Consumption Survey Method, Final Report. The Netherlands, TNO Nutrition and Food Research.
EFSA. (2009a). EFSA statement on the presence of 4-methylbenzophenone found in breakfast cereals. EFSA Journal, 7(3), 243r. doi: https://doi.org/10.2903/j.efsa.2009.243r
EFSA. (2017). Safety of benzophenone to be used as flavouring. EFSA, 15(11). doi: https://doi.org/10.2903/j.efsa.2017.5013
Elizalde, M. P., Aparicio, J. L., & Rincón, M. (2020). Interpretation of the migration of benzophenone type photoinitiators into different food simulants and foodstuffs in terms of the physicochemical properties of the migrants. Food Packaging and Shelf Life, 23, 100444.
European Commission. (1995). First report on certain additives used in the manufacture of plastic materials intended to come into contact with foodstuffs (Opinions expressed until 3 May 1992). . Reports of the Scientific Committee for Food., Thirty-third series.
FDA, U. (2018). Food additive regulations; synthetic flavoring agents and adjuvants. 83(195), 50490.
Federal Ministry of Food and Agriculture. (2017). Twenty-First Ordinance amending the Consumer Goods Ordinance.
Gallart-Ayala, H., Núñez, O., Moyano, E., & Galceran, M. T. (2011). Analysis of UV ink photoinitiators in packaged food by fast liquid chromatography at sub-ambient temperature coupled to tandem mass spectrometry. Journal of Chromatography A, 1218(3), 459-466.
García Ibarra, V., Rodríguez Bernaldo de Quirós, A., Paseiro Losada, P., & Sendón, R. (2019). Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packaging and Shelf Life, 21, 100325.
Gustavsson Gonzalez, H., Farbrot, A., & Larkö, O. (2002). Percutaneous absorption of benzophenone‐3, a common component of topical sunscreens. Clinical and experimental dermatology, 27(8), 691-694.
Han, X., Lu, T., Hu, Y., Duan, J., Guan, Y., Huang, X., . . . Chen, T. (2022). A metabolomic study on the effect of prenatal exposure to Benzophenone-3 on spontaneous fetal loss in mice. Ecotoxicology and Environmental Safety, 233, 113347.
Hiller-Sturmhöfel, S., & Bartke, A. (1998). The endocrine system: an overview. Alcohol health and research world, 22(3), 153-164.
Huang, Y.-F., Chang, J.-P., Chen, H.-C., & Huang, Y.-M. (2021). Simultaneous trace analysis of 10 benzophenone-type ultraviolet filters in fish through liquid chromatography–tandem mass spectrometry. Environmental Pollution, 286, 117306.
Huang, Y.-F., Chang, J.-P., Chen, H.-C., & Liu, X.-R. (2022). Fish consumption is an indicator of exposure to benzophenone derivatives: A probabilistic risk assessment in Taiwanese population. Science of The Total Environment, 812, 152421.
Huang, Y.-F., Chien, J.-T., Chen, H.-C., Liu, X.-R., Chang, J.-P., & Huang, J.-J. (2021). Rapid determination of benzophenone derivatives in cereals using FaPEx coupled with ultraehigh-performance liquid chromatographyetandem mass spectrometry. Journal of Food & Drug Analysis, 29(2).
IARC. (2013). BENZOPHENONE. Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-Water(IARC Working Group on the Evaluation of Carcinogenic Risks to Humans.Lyon (FR): International Agency for Research on Cancer; 2013.IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No. 101.), 285-301.
Jeon, H.-K., Sarma, S. N., Kim, Y.-J., & Ryu, J.-C. (2007). Forward gene mutation assay of seven benzophenone-type UV filters using L5178Y mouse lymphoma cell. Molecular & Cellular Toxicology, 3(1), 23-30.
Ji, S., Zhang, J., Tao, G., Peng, C., Sun, Y., Hou, R., & Cai, H. (2019). Influence of heating source on the migration of photoinitiators from packaging materials into Tenax® and popcorn. Food Packaging and Shelf Life, 21, 100340.
Jiang, Y., Zhao, H., Xia, W., Li, Y., Liu, H., Hao, K., . . . Xu, S. (2019). Prenatal exposure to benzophenones, parabens and triclosan and neurocognitive development at 2 years. Environment International, 126, 413-421.
Johns, S. M., Jickells, S. M., Read, W. A., & Castle, L. (2000). Studies on functional barriers to migration. 3. Migration of benzophenone and model ink components from cartonboard to food during frozen storage and microwave heating. Packaging Technology and Science, 13(3), 99-104.
Jung, T., Simat, T. J., Altkofer, W., & Fügel, D. (2013). Survey on the occurrence of photo-initiators and amine synergists in cartonboard packaging on the German market and their migration into the packaged foodstuffs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 30(11), 1993-2016.
Kawasaki, Y., & Sendo, T. (2021). Three photoinitiators induce breast tumor growth in mouse xenografts with MCF-7 breast cancer cells. Current Research in Toxicology, 2, 322-328.
Kawasaki, Y., Tsuboi, C., Yagi, K., Morizane, M., Masaoka, Y., Esumi, S., . . . Sendo, T. (2015). Photoinitiators enhanced 1, 2-dichloropropane-induced cytotoxicity in human normal embryonic lung fibroblasts cells in vitro. Environmental Science and Pollution Research, 22(6), 4763-4770.
Keck-Antoine, K., Lievens, E., Bayer, J., Mara, J., Jung, D.-S., & Jung, S.-L. (2010). Chapter 4 - Additives to design and improve the performance of multilayer flexible packaging. In J. R. Wagner (Ed.), Multilayer Flexible Packaging (pp. 37-56). Boston: William Andrew Publishing.
Kim, B., Kwon, B., Jang, S., Kim, P.-G., & Ji, K. (2016). Major benzophenone concentrations and influence of food consumption among the general population in Korea, and the association with oxidative stress biomarker. Science of The Total Environment, 565, 649-655.
Kim, S.-H., Hwang, K.-A., Shim, S.-M., & Choi, K.-C. (2015). Growth and migration of LNCaP prostate cancer cells are promoted by triclosan and benzophenone-1 via an androgen receptor signaling pathway. Environmental Toxicology and Pharmacology, 39(2), 568-576.
Klimová, Z., Hojerová, J., & Beránková, M. (2015). Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens – In vitro study mimicking real-life consumer habits. Food and Chemical Toxicology, 83, 237-250.
Koivikko, R., Pastorelli, S., Rodríguez-Bernaldo de Quirós, A., Paseiro-Cerrato, R., Paseiro-Losada, P., & Simoneau, C. (2010). Rapid multi-analyte quantification of benzophenone, 4-methylbenzophenone and related derivatives from paperboard food packaging. Food Additives and Contaminants, 27(10), 1478-1486.
Ma, B., Lu, G., Liu, F., Nie, Y., Zhang, Z., & Li, Y. (2016). Organic UV filters in the surface water of Nanjing, China: Occurrence, distribution and ecological risk assessment. Bulletin of environmental contamination and toxicology, 96(4), 530-535.
Ma, J., Qin, C., Waigi, M. G., Gao, Y., Hu, X., Mosa, A., & Ling, W. (2022). Functional group substitutions influence the binding of benzophenone-type UV filters with DNA. Chemosphere, 299, 134490.
Ma, X., Wan, Y., Wu, M., Xu, Y., Xu, Q., He, Z., & Xia, W. (2018). Occurrence of benzophenones, parabens and triclosan in the Yangtze River of China, and the implications for human exposure. Chemosphere, 213, 517-525.
Maia, J., Rodríguez-Bernaldo de Quirós, A., Sendón, R., Cruz, J. M., Seiler, A., Franz, R., . . . Mercea, P. (2016). Determination of key diffusion and partition parameters and their use in migration modelling of benzophenone from low-density polyethylene (LDPE) into different foodstuffs. Food Additives & Contaminants: Part A, 33(4), 715-724.
Molina-Molina, J.-M., Escande, A., Pillon, A., Gomez, E., Pakdel, F., Cavaillès, V., . . . Balaguer, P. (2008). Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays. Toxicology and Applied Pharmacology, 232(3), 384-395.
Morizane, M., Kawasaki, Y., Miura, T., Yagi, K., Esumi, S., Kitamura, Y., & Sendo, T. (2015). Photoinitiator-initiated estrogenic activity in human breast cancer cell line MCF-7. Journal of Toxicology and Environmental Health, Part A, 78(23-24), 1450-1460.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 3102, B. R. M., 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Benzophenone. 二苯甲酮.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 4632, O. R. M., 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Oxybenzone. 二苯甲酮3.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 8348, -. H. R. M., 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/2-Hydroxybenzophenone. 二羥基二苯甲酮.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 8569, D. R. M., 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Dioxybenzone. 二苯甲酮8.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 8571, 2',4,4'-Tetrahydroxybenzophenone. Retrieved May 5, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/2_2_4_4_-Tetrahydroxybenzophenone. 二苯甲酮2.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 8572, 4-Dihydroxybenzophenone. Retrieved May 5, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/2_4-Dihydroxybenzophenone. 二苯甲酮1.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 8652, -. M. R. M., 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/4-Methylbenzophenone. 四甲基二苯甲酮.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 10851, Trilaurin. Retrieved July 14, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/10851.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 11816, M.-b. R. M., 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Methyl-2-benzoylbenzoate. 二苯甲酰苯甲酸甲酯.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 14347, -. H. R. M., 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/4-Hydroxybenzophenone. 四羥基二苯甲酮.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 19988, S. R. M., 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Sulisobenzone. 二苯甲酮4.
National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 75040, -. B. R. M., 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/4-Benzoylbiphenyl. 四苯基二苯甲酮.
Pastorelli, S., Sanches-Silva, A., Cruz, J. M., Simoneau, C., & Losada, P. P. (2008). Study of the migration of benzophenone from printed paperboard packages to cakes through different plastic films. European Food Research and Technology, 227(6), 1585-1590.
Peinado, F. M., Ocón-Hernández, O., Iribarne-Durán, L. M., Vela-Soria, F., Ubiña, A., Padilla, C., . . . Artacho-Cordón, F. (2021). Cosmetic and personal care product use, urinary levels of parabens and benzophenones, and risk of endometriosis: results from the EndEA study. Environmental Research, 196, 110342.
Pitt, J. J. (2009). Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. The Clinical biochemist. Reviews, 30(1), 19-34.
Pollack, A. Z., Buck Louis, G. M., Chen, Z., Sun, L., Trabert, B., Guo, Y., & Kannan, K. (2015). Bisphenol A, benzophenone-type ultraviolet filters, and phthalates in relation to uterine leiomyoma. Environmental Research, 137, 101-107.
Rhodes, M. C., Bucher, J. R., Peckham, J. C., Kissling, G. E., Hejtmancik, M. R., & Chhabra, R. S. (2007). Carcinogenesis studies of benzophenone in rats and mice. Food and Chemical Toxicology, 45(5), 843-851.
Rodriguez-Bernaldo de Quiros, A., Paseiro-Cerrato, R., Pastorelli, S., Koivikko, R., Simoneau, C., & Paseiro-Losada, P. (2009). Migration of photoinitiators by gas phase into dry foods. Journal of agricultural and food chemistry, 57(21), 10211-10215.
Rousselle, C., Meslin, M., Berman, T., Woutersen, M., Bil, W., Wildeman, J., & Chaudhry, Q. (2022). Using Human Biomonitoring Data to Support Risk Assessment of Cosmetic Ingredients—A Case Study of Benzophenone-3. Toxics, 10(2), 96.
Rubio, L., Valverde-Som, L., Sarabia, L. A., & Ortiz, M. C. (2019). The behaviour of Tenax as food simulant in the migration of polymer additives from food contact materials by means of gas chromatography/mass spectrometry and PARAFAC. Journal of Chromatography A, 1589, 18-29.
Sagratini, G., Caprioli, G., Cristalli, G., Giardiná, D., Ricciutelli, M., Volpini, R., . . . Vittori, S. (2008). Determination of ink photoinitiators in packaged beverages by gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry. Journal of Chromatography A, 1194(2), 213-220.
Sang, Z., & Leung, K. S.-Y. (2016). Environmental occurrence and ecological risk assessment of organic UV filters in marine organisms from Hong Kong coastal waters. Science of The Total Environment, 566-567, 489-498.
SCCS. (2008). OPINION ON Benzophenone-3.
Schmutzler, C., Bacinski, A., Gotthardt, I., Huhne, K., Ambrugger, P., Klammer, H., . . . Köhrle, J. (2007). The Ultraviolet Filter Benzophenone 2 Interferes with the Thyroid Hormone Axis in Rats and Is a Potent in Vitro Inhibitor of Human Recombinant Thyroid Peroxidase. Endocrinology, 148(6), 2835-2844.
Shen, D.-x., Lian, H.-z., Ding, T., Xu, J.-z., & Shen, C.-y. (2009). Determination of low-level ink photoinitiator residues in packaged milk by solid-phase extraction and LC-ESI/MS/MS using triple-quadrupole mass analyzer. Anal Bioanal Chem, 395(7), 2359-2370.
Shin, S., Go, R.-E., Kim, C.-W., Hwang, K.-A., Nam, K.-H., & Choi, K.-C. (2016). Effect of benzophenone-1 and octylphenol on the regulation of epithelial-mesenchymal transition via an estrogen receptor-dependent pathway in estrogen receptor expressing ovarian cancer cells. Food and Chemical Toxicology, 93, 58-65.
Sirot, V., Rivière, G., Leconte, S., Leblanc, J.-C., Kolf-Clauw, M., Vasseur, P., . . . Hulin, M. (2021). Infant total diet study in France: Exposure to substances migrating from food contact materials. Environment International, 149, 106393.
Suzuki, T., Kitamura, S., Khota, R., Sugihara, K., Fujimoto, N., & Ohta, S. (2005). Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicology and Applied Pharmacology, 203(1), 9-17.
Tang, R., Chen, M.-j., Ding, G.-d., Chen, X.-j., Han, X.-m., Zhou, K., . . . Wang, X.-r. (2013). Associations of prenatal exposure to phenols with birth outcomes. Environmental Pollution, 178, 115-120.
Teiri, H., Samaei, M. R., Dehghani, M., Azhdarpoor, A., Hajizadeh, Y., Mohammadi, F., & Kelishadi, R. (2022). The association of prenatal exposure to benzophenones with gestational age and offspring size at birth. Environmental Science and Pollution Research, 29(17), 24682-24695.
The Switzerland Federal Department of Home Affairs. (2019). SR 817.023.21 (EDI Regulation on materials and articles intended to come into contact with foodstuffs).
Triantafyllou, V. I., Akrida-Demertzi, K., & Demertzis, P. G. (2007). A study on the migration of organic pollutants from recycled paperboard packaging materials to solid food matrices. Food Chemistry, 101(4), 1759-1768.
Van Den Houwe, K., Van Heyst, A., Evrard, C., Van Loco, J., Bolle, F., Lynen, F., & Van Hoeck, E. (2016). Migration of 17 photoinitiators from printing inks and cardboard into packaged food–results of a belgian market survey. Packaging Technology and Science, 29(2), 121-131.
Van Hoeck, E., De Schaetzen, T., Pacquet, C., Bolle, F., Boxus, L., & Van Loco, J. (2010). Analysis of benzophenone and 4-methylbenzophenone in breakfast cereals using ultrasonic extraction in combination with gas chromatography–tandem mass spectrometry (GC–MSn). Analytica Chimica Acta, 663(1), 55-59.
Wan, Y., Xue, J., & Kannan, K. (2015). Occurrence of benzophenone-3 in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Science of The Total Environment, 537, 304-308.
行政院衛生福利部食品藥物管理署. (2019). 衛生福利部食品藥物管理署檢驗機構實驗室品質系統基本規範. 28-36.
行政院衛生福利部食品藥物管理署與國家衛生研究院. (2021). 國家攝食資料庫使用指引. 1-13.
行政院衛生福利部國民健康署. (2018). 每日飲食指南手冊. 1-29.
行政院環境保護署. (2019). 化學物質檢測方法-有機類定性及定量分析法. 1-13.
松本, 比., 足立, 伸., & 鈴木, 定. (2005). 紫外線吸収剤及びその関連化合物によるエストロゲン様作用. YAKUGAKU ZASSHI, 125(8), 643-652.
新文京開發出版股份有限公司, 黃. 賴. (2009a). 分析化學. 296-299.
新文京開發出版股份有限公司, 黃. 賴. (2009b). 分析化學. 275.
衛生福利部食品藥物管理署. (2017). 食品添加物使用範圍及限量暨規格標準

電子全文 電子全文(網際網路公開日期:20270719)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top