跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/22 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴靜慧
研究生(外文):DAI,JING-HUI
論文名稱:應用光譜分析評估蚯蚓堆肥腐熟度
論文名稱(外文):Application of spectroscopy analysis for assessing maturity degree of vermicomposts
指導教授:鄭文伯鄭文伯引用關係
指導教授(外文):CHENG,WEN-PO
口試委員:余瑞芳張簡水紋
口試委員(外文):YU,RUEY-FANGCHHANG CHIEN, SHUI-WEN
口試日期:2022-06-07
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:環境與安全衛生工程學系碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:149
中文關鍵詞:蚯蚓堆肥成熟度光譜分析螢光熄滅效應
外文關鍵詞:VermicompostingMaturitySpectral analysisFluorescence quenching effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
污水廠有機污泥處理費用逐年增加,但其富含大量有機物質可透過堆肥達到穩定化及再利用,在堆肥過程中有機物會轉化成黃腐酸與腐植酸等腐植質類物質,利用可見光波長465 nm(E4)、665 nm(E6)可分別測定堆肥過程中黃腐酸與腐植酸的吸光值,並依比值E4/E6作為判斷堆肥腐熟度依據。而腐植質類物質會與金屬離子進行錯合反應後會產生螢光熄滅效應,運用Stern-Volmer公式求得堆肥中黃腐酸與腐植酸之螢光熄滅常數值Kq,能夠代換為腐植質與金屬離子之錯合物形成常數值。
本研究使用兩種污泥進行蚯蚓堆肥,測定pH值得知兩種污泥差異及污泥蚯蚓分解後達穩定,接續測定FT-IR光譜,確認堆肥後污泥已被蚯蚓轉化並達穩定腐熟狀態。再以兩種方式萃取堆肥中黃腐酸、腐植酸,測定三維螢光光譜(EEM),並將光譜劃分成五個區域進行討論後確定污泥中有機物已被蚯蚓分解並轉化。
研究結果顯示以E4/E6比值與兩種萃取液之熄滅常數值(K1、K2)做比較,兩種污泥經由蚯蚓堆肥後K1、K2值均明顯上升,幅度也較E4/E6明顯,隨後比較兩種污泥之蚯蚓堆肥結果,發現蚯蚓對於污泥之適口性將影響其分解過程,透過FT-IR、EEM圖譜、K1、K2值皆能發現蚯蚓堆肥達腐熟。比較三種不同光譜分析後,螢光分析較能呈現出堆肥腐熟度之完整性,且在蚯蚓離巢後之K1、K2值小幅下降,顯示離巢後腐植化活動持續進行。
The cost of sewage sludge treatment is keep increasing, but it is rich in organic substances which can be stabilized and reused through composting. In the composting process, organic substances will be converted into humic substances such as fulvic acid and humic acid. The absorbance values of fulvic acid and humic acid can be measured by wavelengths of 465 nm(E4) and 665 nm(E6) respectively, and the ratio E4/E6 is used as the basis for compost maturity evaluation. Besides, humic substances will react with metal ions to produce fluorescence quenching effect. The fluorescence quenching constant Kq of fulvic acid and humic acid in compost is obtained by Stern-Volmer formula. The Kq constant can replace the stability constants of metal–humic matter complexes.
In this study, two kinds of sewage sludges were used for vermicomposting. The difference of pH value between the two kinds of sludge and the stability of the sludge after earthworm decomposition were determined. Then the FT-IR spectrum was determined to confirm that the sludge after composting had been transformed by earthworm and reached a stable state of maturity. Then fulvic acid and humic acid were extracted from compost in two extract conditions, and the excitation−emission matrix (EEM) was measured. The EEM spectrum was divided into five excitation−emission regions for discussion, and it was determined that the organic matter in sludge had been decomposed and transformed by earthworms.
Comparing E4/E6 ratio with the quenching constant values (K1, K2) of two kind extract conditions, the values of K1, K2 were increased obviously with the period of vermicomposting time, and the change of the K1/K2 ratio were also obvious than E4/E6 ratio. It was also found that the palatability of earthworm would affect the ability of sludge decomposition. Besides, the maturity of vermicompost that produced from sewage sludge could be determined from the FT-IR, EEM, K1, K2 analyze. But, the fluorescence analysis shows a better result to correspond the completeness of compost maturity. After the earthworm left the nest, both the values of K1 and K2 decreased slightly with storage time which indicating the humus activity continued.
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 ix
表目錄 xii
第一章、 緒論 1
1.1研究背景與動機 1
1.2研究目的 4
1.3研究架構 5
第二章、 文獻回顧 6
2.1傳統堆肥與蚯蚓堆肥之差異 6
2.1.1傳統堆肥 6
2.1.2蚯蚓堆肥 7
2.1.2.1蚯蚓品種與其生長特性 12
2.1.2.2環境因素對蚯蚓之影響性 16
2.1.2.3蚯蚓糞 19
2.2堆肥腐熟度指標 23
2.2.1物理性指標 23
2.2.2化學性指標 24
2.2.2.1 E4/E6比 25
2.2.3生物性指標 27
2.3堆肥中腐植質來源及其特性 30
2.4蚯蚓堆肥腐植質之螢光檢測應用 34
2.5蚯蚓堆肥之紅外線光譜相關研究 41
2.6影響螢光強度之因素 43
2.6.1螢光熄滅效應 46
2.6.2螢光熄滅劑 48
2.6.3 Stern-Volmer公式 48
2.7錯合物形成滴定法 50
第三章、 材料方法 54
3.1實驗材料與設備 54
3.1.1試劑材料 54
3.1.2儀器設備 55
3.2蚯蚓堆肥試驗 56
3.2.1堆肥設置 56
3.2.2蚯蚓糞採集 57
3.3分析方法與實驗流程 58
3.3.1堆肥之pH值測定 59
3.3.2紅外線光譜分析 60
3.3.3紫外−可見光光譜分析 61
3.3.4螢光光譜分析 62
第四章、 結果與討論 64
4.1蚯蚓堆肥之pH值變化 64
4.1.1學校污泥之蚯蚓堆肥pH值變化 65
4.1.2都市污泥之蚯蚓堆肥pH值變化 66
4.1.3兩種不同污泥堆肥之pH值差異性 67
4.2蚯蚓堆肥之FT-IR變化 69
4.2.1學校污泥之蚯蚓堆肥FT-IR變化 70
4.2.2都市污泥之蚯蚓堆肥FT-IR變化 75
4.2.3兩種不同污泥之FT-IR差異性 80
4.3蚯蚓堆肥之EEM變化 83
4.3.1學校污泥之蚯蚓堆肥EEM變化 83
4.3.2都市污泥之蚯蚓堆肥EEM變化 86
4.4以螢光熄滅效應探討蚯蚓堆肥之變化 88
4.4.1蚯蚓堆肥之螢光熄滅試驗結果 92
4.4.2蚯蚓堆肥之傳統堆肥腐熟度指標(E4/E6)變化 98
4.4.3蚯蚓堆肥離巢後之腐熟度變化 101
4.4.4總結 111
第五章、 結論與建議 117
5.1結論 117
5.2建議 119
參考文獻 120
附錄一、各項樣品稀釋之三維螢光光譜圖 142
Agnew, J. M., & Leonard, J. J. (2003). The Physical Properties of Compost. Compost Science & Utilization, 11(3), 238-264.
Aguiar, N. O., Olivares, F. L., Novotny, E. H., Dobbss, L. B., Balmori, D. M., Santos-Júnior, L. G., . . . Canellas, L. P. (2012). Bioactivity of humic acids isolated from vermicomposts at different maturation stages. Plant and Soil, 362(1-2), 161-174.
Aira, M., & Dominguez, J. (2008). Optimizing vermicomposting of animal wastes: effects of rate of manure application on carbon loss and microbial stabilization. J Environ Manage, 88(4), 1525-1529.
Aira, M., Monroy, F., & Dominguez, J. (2007a). Earthworms strongly modify microbial biomass and activity triggering enzymatic activities during vermicomposting independently of the application rates of pig slurry. Sci Total Environ, 385(1-3), 252-261.
Aira, M., Monroy, F., & Dominguez, J. (2007b). Microbial biomass governs enzyme activity decay during aging of worm-worked substrates through vermicomposting. J Environ Qual, 36(2), 448-452.
Ait Baddi, G., Cegarra, J., Merlina, G., Revel, J. C., & Hafidi, M. (2009). Qualitative and quantitative evolution of polyphenolic compounds during composting of an olive-mill waste-wheat straw mixture. J Hazard Mater, 165(1-3), 1119-1123.
Albrecht, R., Le Petit, J., Terrom, G., & Perissol, C. (2011). Comparison between UV spectroscopy and Nirs to assess humification process during sewage sludge and green wastes co-composting. Bioresour Technol, 102(6), 4495-4500.
Albrecht, R., Verrecchia, E., & Pfeifer, H. R. (2015). The use of solid-phase fluorescence spectroscopy in the characterisation of organic matter transformations. Talanta, 134, 453-459.
Alburquerque, J. A., Gonzalvez, J., Garcia, D., & Cegarra, J. (2006). Measuring detoxification and maturity in compost made from "alperujo", the solid by-product of extracting olive oil by the two-phase centrifugation system. Chemosphere, 64(3), 470-477.
Algar, W. R., & Massey, M. (2019). Key Errors to Avoid in the Consideration of Fluorescence Quenching Data. In (Vol. 34, pp. 12-14): ADVANSTAR COMMUNICATIONS INC 131 W 1ST STREET, DULUTH, MN 55802 USA.
Ali, U., Sajid, N., Khalid, A., Riaz, L., Rabbani, M. M., Syed, J. H., & Malik, R. N. (2015). A review on vermicomposting of organic wastes. Environmental Progress & Sustainable Energy, 34(4), 1050-1062.
Alidadi, H., Hosseinzadeh, A., Najafpoor, A. A., Esmaili, H., Zanganeh, J., Dolatabadi Takabi, M., & Piranloo, F. G. (2016). Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators. J Environ Manage, 182, 134-140.
Amir, S., Jouraiphy, A., Meddich, A., El Gharous, M., Winterton, P., & Hafidi, M. (2010). Structural study of humic acids during composting of activated sludge-green waste: elemental analysis, FTIR and 13C NMR. J Hazard Mater, 177(1-3), 524-529.
Arancon, N. Q., Edwards, C. A., Babenko, A., Cannon, J., Galvis, P., & Metzger, J. D. (2008). Influences of vermicomposts, produced by earthworms and microorganisms from cattle manure, food waste and paper waste, on the germination, growth and flowering of petunias in the greenhouse. Applied Soil Ecology, 39(1), 91-99.
Arancon, N. Q., Edwards, C. A., Bierman, P., Metzger, J. D., Lee, S., & Welch, C. (2003). Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers and strawberries. Pedobiologia, 47(5-6), 731-735.
Arruda, M. G. P. a. M. A. Z. (2003). Vermicompost as a Natural Adsorbent Material: Characterization and Potentialities for Cadmium Adsorption. J. Braz. Chem. Soc., 14(1), 39-47.
Arumugam, K., Renganathan, S., Babalola, O. O., & Muthunarayanan, V. (2018). Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Manag, 74, 185-193.
Aslam, D. N., Horwath, W., & VanderGheynst, J. S. (2008). Comparison of several maturity indicators for estimating phytotoxicity in compost-amended soil. Waste Manag, 28(11), 2070-2076.
Atiyeh, R. M., Domínguez, J., Subler, S., & Edwards, C. A. (2000). Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei, Bouché) and the effects on seedling growth. Pedobiologia, 44(6), 709-724.
Atiyeh, R. M., Edwards, C. A., Subler, S., & Metzger, J. D. (2001). Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresource Technology, 78(1), 11-20.
Atiyeh, R. M., Lee, S., Edwards, C. A., Arancon, N. Q., & Metzger, J. D. (2002). The influence of humic acids derived from earthworm-processed organic wastes on plant growth. Bioresource Technology, 84(1), 7-14.
Atiyeh, R. M., Subler, S., Edwards, C. A., Bachman, G., Metzger, J. D., & Shuster, W. (2000). Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia, 44(5), 579-590.
Bai, Y., Wu, F., Liu, C., Guo, J., Fu, P., Li, W., & Xing, B. (2008). Interaction between carbamazepine and humic substances: a fluorescence spectroscopy study. Environ Toxicol Chem, 27(1), 95-102.
Barrena Gomez, R., Vazquez Lima, F., & Sanchez Ferrer, A. (2006). The use of respiration indices in the composting process: a review. Waste Manag Res, 24(1), 37-47.
Benitez, E., Nogales, R., Elvira, C., Masciandaro, G., & Ceccanti, B. (1999). Enzyme activities as indicators of the stabilization of sewage sludges composting with Eisenia foetida. Bioresource Technology, 67(3), 297-303.
Bernai, M. P., Paredes, C., Sánchez-Monedero, M. A., & Cegarra, J. (1998). Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresource Technology, 63(1), 91-99.
Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour Technol, 100(22), 5444-5453.
Bernal, M. P., Navarro, A. F., Sánchez-Monedero, M. A., Roig, A., & Cegarra, J. (1998). Influence of sewage sludge compost stability and maturity on carbon and nitrogen mineralization in soil. Soil Biology and Biochemistry, 30(3), 305-313.
Bhat, S. A., Singh, J., & Vig, A. P. (2017). Earthworms as Organic Waste Managers and Biofertilizer Producers. Waste and Biomass Valorization, 9(7), 1073-1086.
Bhattacharya, S. S., & Chattopadhyay, G. N. (2002). Increasing Bioavailability of Phosphorus from Fly Ash through Vermicomposting. Journal of Environmental Quality, 31(6), 2116-2119.
Birdwell, J. E., & Engel, A. S. (2010). Characterization of dissolved organic matter in cave and spring waters using UV–Vis absorbance and fluorescence spectroscopy. Organic Geochemistry, 41(3), 270-280.
Boruah, T., Barman, A., Kalita, P., Lahkar, J., & Deka, H. (2019). Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. Bioresour Technol, 294, 122147.
Bouché, M. B. (1977). Strategies lombriciennes. Ecological Bulletins(25), 122-132.
Busato, J. G., Lima, L. S., Aguiar, N. O., Canellas, L. P., & Olivares, F. L. (2012). Changes in labile phosphorus forms during maturation of vermicompost enriched with phosphorus-solubilizing and diazotrophic bacteria. Bioresour Technol, 110, 390-395.
Calderín García, A., Guridi Izquierdo, F., & Berbara, R. L. L. (2014). Chapter 18 - Effects of Humic Materials on Plant Metabolism and Agricultural Productivity. In P. Ahmad & S. Rasool (Eds.), Emerging Technologies and Management of Crop Stress Tolerance (pp. 449-466). San Diego: Academic Press.
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383(1-2), 3-41.
Carballo, T., Gil, M. V., Gomez, X., Gonzalez-Andres, F., & Moran, A. (2008). Characterization of different compost extracts using Fourier-transform infrared spectroscopy (FTIR) and thermal analysis. Biodegradation, 19(6), 815-830.
Caricasole, P., Provenzano, M. R., Hatcher, P. G., & Senesi, N. (2010). Chemical characteristics of dissolved organic matter during composting of different organic wastes assessed by (13)C CPMAS NMR spectroscopy. Bioresour Technol, 101(21), 8232-8236.
Che, J., Lin, W., Ye, J., Liao, H., Yu, Z., Lin, H., & Zhou, S. (2020). Insights into compositional changes of dissolved organic matter during a full-scale vermicomposting of cow dung by combined spectroscopic and electrochemical techniques. Bioresour Technol, 301, 122757.
Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence Excitation-mission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 37(24), 5701-5710.
Chen, X., Zhao, Y., Zeng, C., Li, Y., Zhu, L., Wu, J., . . . Wei, Z. (2019). Assessment contributions of physicochemical properties and bacterial community to mitigate the bioavailability of heavy metals during composting based on structural equation models. Bioresour Technol, 289, 121657.
Chen, Y. (2003). Nuclear Magnetic Resonance, Infra-Red and Pyrolysis: Application of Spectroscopic Methodologies to Maturity Determination of Composts. Compost Science & Utilization, 11(2), 152-168.
Chen, Y., Senesi, N., & Schnitzer, M. (1977). Information Provided on Humic Substances by E4/E6 Ratios. Soil Science Society of America Journal, 41(2), 352-358.
Chikae, M., Ikeda, R., Kerman, K., Morita, Y., & Tamiya, E. (2006). Estimation of maturity of compost from food wastes and agro-residues by multiple regression analysis. Bioresour Technol, 97(16), 1979-1985.
Coble, P. G., Lead, J., Baker, A., Reynolds, D. M., & Spencer, R. G. (2014). Aquatic organic matter fluorescence: Cambridge University Press.
Cotta, J. A. d. O., Carvalho, N. L. C., Brum, T. d. S., & Rezende, M. O. d. O. (2015). Compostagem versus vermicompostagem: comparação das técnicas utilizando resíduos vegetais, esterco bovino e serragem. Engenharia Sanitaria e Ambiental, 20(1), 65-78.
Curry, J. (2004). Factors Affecting the Abundance of Earthworms in Soils. In (Vol. 9, pp. 91-113).
D.K. Ryan, J. H. W. (1982). Fluorescence quenching titration for determination of complexing capacities and stability constants of fulvic acid. Anal. Chem., 54(6), 986-990.
Dalang, F., Buffle, J., & Haerdi, W. (1984). Study of the influence of fulvic substances on the adsorption of copper(II) ions at the kaolinite surface. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 18(3), 135-141.
de Melo, B. A., Motta, F. L., & Santana, M. H. (2016). Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater Sci Eng C Mater Biol Appl, 62, 967-974.
Dinesh, R., Srinivasan, V., Hamza, S., Manjusha, A., & Kumar, P. S. (2012). Short-term effects of nutrient management regimes on biochemical and microbial properties in soils under rainfed ginger (Zingiber officinale Rosc.). Geoderma, 173-174, 192-198.
Doan, T. T., Ngo, P. T., Rumpel, C., Nguyen, B. V., & Jouquet, P. (2013). Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment. Scientia Horticulturae, 160, 148-154.
Domeizel, M., Khalil, A., & Prudent, P. (2004). UV spectroscopy: a tool for monitoring humification and for proposing an index of the maturity of compost. Bioresour Technol, 94(2), 177-184.
Dominguez, J., Aira, M., Kolbe, A. R., Gomez-Brandon, M., & Perez-Losada, M. (2019). Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Sci Rep, 9(1), 9657.
Domínguez-Crespo, M. A., Sánchez-Hernández, Z. E., Torres-Huerta, A. M., Negrete-Rodríguez, M. d. l. L. X., Conde-Barajas, E., & Flores-Vela, A. (2011). Effect of the Heavy Metals Cu, Ni, Cd and Zn on the Growth and Reproduction of Epigeic Earthworms (E. fetida) during the Vermistabilization of Municipal Sewage Sludge. Water, Air, & Soil Pollution, 223(2), 915-931.
Domínguez, J., Aira, M., & Gómez-Brandón, M. (2010). Vermicomposting: earthworms enhance the work of microbes. In Microbes at work (pp. 93-114): Springer.
Domínguez, J., Briones, M., & Mato, S. (1997). Effect on the diet on growth and reproduction of Eisenia andrei (Oligochaeta, Lumbricidae). Pedobiologia, 41(6), 566.
E. Guerra-Rodríguez, M. D.-R., M. Vázquez. (2001). Co-composting of chestnut burr and leaf litter with solid poultry manure. Bioresour. Technol., 78(1), 107-109.
Edwards, C. A. (1988). Breakdown of animal, vegetable and industrial organic wastes by earthworms.
Edwards, C. A., Arancon, N. Q., & Sherman, R. L. (2010). Vermiculture technology: earthworms, organic wastes, and environmental management: CRC press.
Edwards, C. A., & Bohlen, P. J. (1996). Biology and ecology of earthworms (Vol. 3): Springer Science & Business Media.
Edwards, C. A., & Burrows, I. (1988). potential of earthworm composts as plant growth media.
Edwards, C. A., Dominguez, J., & Neuhauser, E. F. (1998). Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management. Biology and Fertility of Soils, 27(2), 155-161.
Edwards, C. A., & Fletcher, K. E. (1988). Interactions between earthworms and microorganisms in organic-matter breakdown. Agriculture, Ecosystems & Environment, 24(1), 235-247.
El Hajjouji, H., Fakharedine, N., Ait Baddi, G., Winterton, P., Bailly, J. R., Revel, J. C., & Hafidi, M. (2007). Treatment of olive mill waste-water by aerobic biodegradation: an analytical study using gel permeation chromatography, ultraviolet-visible and Fourier transform infrared spectroscopy. Bioresour Technol, 98(18), 3513-3520.
Enev, V., Sedláček, P., Kubíková, L., Sovová, Š., Doskočil, L., Klučáková, M., & Pekař, M. (2021). Polarity-Based Sequential Extraction as a Simple Tool to Reveal the Structural Complexity of Humic Acids. Agronomy, 11(3).
Fernández-Bayo, J. D., Nogales, R., & Romero, E. (2009). Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. European Journal of Soil Science, 60(6), 935-944.
Fernández-Gómez, M. J., Díaz-Raviña, M., Romero, E., & Nogales, R. (2013). Recycling of environmentally problematic plant wastes generated from greenhouse tomato crops through vermicomposting. International Journal of Environmental Science and Technology, 10(4), 697-708.
Fernández-Romero, M. L., Clark, J. M., Collins, C. D., Parras-Alcántara, L., & Lozano-García, B. (2016). Evaluation of optical techniques for characterising soil organic matter quality in agricultural soils. Soil and Tillage Research, 155, 450-460.
Ferraz Ramos, R., Almeida Santana, N., de Andrade, N., Scheffer Romagna, I., Tirloni, B., de Oliveira Silveira, A., . . . Josemar Seminoti Jacques, R. (2022). Vermicomposting of cow manure: Effect of time on earthworm biomass and chemical, physical, and biological properties of vermicompost. Bioresour Technol, 345, 126572.
Fornes, F., Mendoza-Hernandez, D., Garcia-de-la-Fuente, R., Abad, M., & Belda, R. M. (2012). Composting versus vermicomposting: a comparative study of organic matter evolution through straight and combined processes. Bioresour Technol, 118, 296-305.
Fuentes, M., Baigorri, R., & Garcia-Mina, J. M. (2020). Maturation in composting process, an incipient humification-like step as multivariate statistical analysis of spectroscopic data shows. Environ Res, 189, 109981.
Fuentes, M., González-Gaitano, G., & García-Mina, J. M. (2006). The usefulness of UV–visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts. Organic Geochemistry, 37(12), 1949-1959.
Gauthier, T. D., Shane, E. C., Guerin, W. F., Seitz, W. R., & Grant, C. L. (1986). Fluorescence quenching method for determining equilibrium constants for polycyclic aromatic hydrocarbons binding to dissolved humic materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 20(11), 1162-1166.
Gea, T., Ferrer, P., Alvaro, G., Valero, F., Artola, A., & Sánchez, A. (2007). Co-composting of sewage sludge:fats mixtures and characteristics of the lipases involved. Biochemical Engineering Journal, 33(3), 275-283.
George G. Browna, I. B., Patrick Lavelle. (2000). Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains§. Eur. J. Soil Biol, 36, 177−198.
Gieguzynska, A., Kocmit, & Golebiowska (Agricultural University of Szczecin, S. P. I. o. A. E. (1998). 1060805.
Gomez-Brandon, M., Lazcano, C., & Dominguez, J. (2008). The evaluation of stability and maturity during the composting of cattle manure. Chemosphere, 70(3), 436-444.
Gomez-Brandon, M., Lazcano, C., Lores, M., & Dominguez, J. (2011). Short-term stabilization of grape marc through earthworms. J Hazard Mater, 187(1-3), 291-295.
Gong, X., Li, S., Carson, M. A., Chang, S. X., Wu, Q., Wang, L., . . . Sun, X. (2019). Spent mushroom substrate and cattle manure amendments enhance the transformation of garden waste into vermicomposts using the earthworm Eisenia fetida. J Environ Manage, 248, 109263.
Guhra, T., Stolze, K., Schweizer, S., & Totsche, K. U. (2020). Earthworm mucus contributes to the formation of organo-mineral associations in soil. Soil Biology and Biochemistry, 145.
Gunadi, B., Blount, C., & Edwards, C. A. (2002). The growth and fecundity of Eisenia fetida (Savigny) in cattle solids pre-composted for different periods. Pedobiologia, 46(1), 15-23.
Guo, X., Huang, J., Lu, Y., Shan, G., & Li, Q. (2016). The influence of flue gas desulphurization gypsum additive on characteristics and evolution of humic substance during co-composting of dairy manure and sugarcane pressmud. Bioresour Technol, 219, 169-174.
Guo, X., Li, C., Zhu, Q., Huang, T., Cai, Y., Li, N., . . . Tan, X. (2018). Characterization of dissolved organic matter from biogas residue composting using spectroscopic techniques. Waste Manag, 78, 301-309.
Gupta, R., & Garg, V. K. (2009). Vermiremediation and nutrient recovery of non-recyclable paper waste employing Eisenia fetida. J Hazard Mater, 162(1), 430-439.
Gutiérrez-Miceli, F. A., Llaven, M. A. O., Nazar, P. M., Sesma, B. R., Álvarez-Solís, J. D., & Dendooven, L. (2011). Optimization of Vermicompost and Worm-Bed Leachate for the Organic Cultivation of Radish. Journal of Plant Nutrition, 34(11), 1642-1653.
Gutierrez-Miceli, F. A., Santiago-Borraz, J., Montes Molina, J. A., Nafate, C. C., Abud-Archila, M., Oliva Llaven, M. A., . . . Dendooven, L. (2007). Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour Technol, 98(15), 2781-2786.
Hait, S., & Tare, V. (2012). Transformation and availability of nutrients and heavy metals during integrated composting-vermicomposting of sewage sludges. Ecotoxicol Environ Saf, 79, 214-224.
Hala I Chaoui, L. M. Z., Tsutomu Ohno. (2003). Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability. Soil Biology and Biochemistry, 35(2), 295-302.
Hanc, A., Enev, V., Hrebeckova, T., Klucakova, M., & Pekar, M. (2019). Characterization of humic acids in a continuous-feeding vermicomposting system with horse manure. Waste Manag, 99, 1-11.
Hanc, A., Hrebeckova, T., & Kuzel, S. (2019). Vermicomposting of Distillery Residues in a Vertical-Flow Windrow System. Waste and Biomass Valorization, 10(12), 3647-3657.
Hanc, A., & Vasak, F. (2014). Processing separated digestate by vermicomposting technology using earthworms of the genus Eisenia. International Journal of Environmental Science and Technology, 12(4), 1183-1190.
Haug, R. T. (2018). The practical handbook of compost engineering: Routledge.
He, X. S., Xi, B. D., Zhang, Z. Y., Gao, R. T., Tan, W. B., & Cui, D. Y. (2014). Insight into the evolution, redox, and metal binding properties of dissolved organic matter from municipal solid wastes using two-dimensional correlation spectroscopy. Chemosphere, 117, 701-707.
Hernández-Apaolaza, L., Gascó, J. M., & Guerrero, F. (2000). Initial organic matter transformation of soil amended with composted sewage sludge. Biology and Fertility of Soils, 32(5), 421-426.
Hoitink, H., & Kuter, G. (1986). Effects of composts in growth media on soilborne pathogens. In The role of organic matter in modern agriculture (pp. 289-306): Springer.
Hu, X., Zhang, T., Tian, G., Zhang, L., & Bian, B. (2021). Pilot-scale vermicomposting of sewage sludge mixed with mature vermicompost using earthworm reactor of frame composite structure. Sci Total Environ, 767, 144217.
Huntington, G. B. (1986). Uptake and transport of nonprotein nitrogen by the ruminant gut. Fed Proc, 45(8), 2272-2276.
Hur, J., Lee, D.-H., & Shin, H.-S. (2009). Comparison of the structural, spectroscopic and phenanthrene binding characteristics of humic acids from soils and lake sediments. Organic Geochemistry, 40(10), 1091-1099.
Hussain, N., Abbasi, T., & Abbasi, S. A. (2015). Vermicomposting eliminates the toxicity of Lantana (Lantana camara) and turns it into a plant friendly organic fertilizer. J Hazard Mater, 298, 46-57.
Iglesias Jiménez, E., & Pérez García, V. (1992). Determination of maturity indices for city refuse composts. Agriculture, Ecosystems & Environment, 38(4), 331-343.
Iglesias Jiménez, E., & Perez Garcia, V. (1989). Evaluation of city refuse compost maturity: a review. Biological Wastes, 27(2), 115-142.
Jordão, C. P., Fernandes, R. B. A., de Lima Ribeiro, K., de Barros, P. M., Fontes, M. P. F., & de Paula Souza, F. M. (2009). A Study on Al(III) and Fe(II) Ions Sorption by Cattle Manure Vermicompost. Water, Air, & Soil Pollution, 210(1-4), 51-61.
Jurado, M. M., Suarez-Estrella, F., Lopez, M. J., Vargas-Garcia, M. C., Lopez-Gonzalez, J. A., & Moreno, J. (2015). Enhanced turnover of organic matter fractions by microbial stimulation during lignocellulosic waste composting. Bioresour Technol, 186, 15-24.
Karmegam, N., Jayakumar, M., Govarthanan, M., Kumar, P., Ravindran, B., & Biruntha, M. (2021). Precomposting and green manure amendment for effective vermitransformation of hazardous coir industrial waste into enriched vermicompost. Bioresour Technol, 319, 124136.
Karmegam, N., Vijayan, P., Prakash, M., & John Paul, J. A. (2019). Vermicomposting of paper industry sludge with cowdung and green manure plants using Eisenia fetida: A viable option for cleaner and enriched vermicompost production. Journal of Cleaner Production, 228, 718-728.
Kaushik, P., & Garg, V. K. (2003). Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia foetida. Bioresource Technology, 90(3), 311-316.
Keener, H. M., Dick, W. A., & Hoitink, H. A. J. (2000). Composting and Beneficial Utilization of Composted By-Product Materials. Land Application of Agricultural, Industrial, and Municipal By-Products, 315-341.
Khan, M. A., Ueno, K., Horimoto, S., Komai, F., Someya, T., Inoue, K., . . . Ono, Y. (2009). CIELAB color variables as indicators of compost stability. Waste Manag, 29(12), 2969-2975.
Khan, M. A. I., Ueno, K., Horimoto, S., Komai, F., Tanaka, K., & Ono, Y. (2008). Physicochemical, including spectroscopic, and biological analyses during composting of green tea waste and rice bran. Biology and Fertility of Soils, 45(3), 305-313.
Khan, M. B., Cui, X., Jilani, G., Lazzat, U., Zehra, A., Hamid, Y., . . . He, Z. (2019). Eisenia fetida and biochar synergistically alleviate the heavy metals content during valorization of biosolids via enhancing vermicompost quality. Sci Total Environ, 684, 597-609.
Khatua, C., Sengupta, S., Krishna Balla, V., Kundu, B., Chakraborti, A., & Tripathi, S. (2018). Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Manag, 79, 287-295.
Khwairakpam, M., & Bhargava, R. (2009). Vermitechnology for sewage sludge recycling. J Hazard Mater, 161(2-3), 948-954.
Kirkby, C. A., Richardson, A. E., Wade, L. J., Conyers, M., & Kirkegaard, J. A. (2016). Inorganic Nutrients Increase Humification Efficiency and C-Sequestration in an Annually Cropped Soil. PLoS One, 11(5), e0153698.
Klavins, M., & Purmalis, O. (2013). Properties and structure of raised bog peat humic acids. Journal of Molecular Structure, 1050, 103-113.
Kp, N., Wani, S., Stephane, L., Vv, P., Challagulla, V., Rao, M., & Sahrawat, K. (2006). Vermicomposting: recycling wastes into valuable organic fertilizer. Journal of SAT Agricultural Research, 2.
Kyriacou, A., Kotsou, M., & Lasaridi, K. (2007). Microbial community dynamics and stability assessment during green waste composting.
Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy: Springer.
Landgraf, M. D., da Silva, S. C., & de O. Rezende, M. O. m. (1998). Mechanism of metribuzin herbicide sorption by humic acid samples from peat and vermicompost. Analytica Chimica Acta, 368(1), 155-164.
Lanno, R., Wells, J., Conder, J., Bradham, K., & Basta, N. (2004). The bioavailability of chemicals in soil for earthworms. Ecotoxicol Environ Saf, 57(1), 39-47.
Larionova, A. A., Maltseva, A. N., Lopes de Gerenyu, V. O., Kvitkina, A. K., Bykhovets, S. S., Zolotareva, B. N., & Kudeyarov, V. N. (2017). Effect of temperature and moisture on the mineralization and humification of leaf litter in a model incubation experiment. Eurasian Soil Science, 50(4), 422-431.
Lasaridi, K. E., Stentiford, E. I., & Evans, T. (2000). Windrow composting of wastewater biosolids: process performance and product stability assessment. Water Science and Technology, 42(9), 217-226.
Lashermes, G., Barriuso, E., & Houot, S. (2012). Dissipation pathways of organic pollutants during the composting of organic wastes. Chemosphere, 87(2), 137-143.
Lazcano, C., Gomez-Brandon, M., & Dominguez, J. (2008). Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere, 72(7), 1013-1019.
Lemtiri, A., Colinet, G., Alabi, T., Cluzeau, D., Zirbes, L., Haubruge, E., & Francis, F. (2014). Impacts of earthworms on soil components and dynamics. A review. [Impacts des vers de terre sur les composants et la dynamique du sol]. Biotechnologie, Agronomie, Société et Environnement, 18.
Levi-Minzi, R., Riffaldi, R., & Saviozzi, A. (1986). Organic matter and nutrients in fresh and mature farmyard manure. Agricultural Wastes, 16(3), 225-236.
Li, L., Guo, X. P., Zhao, T. N., Liu, L., & Li, T. Y. (2021). Identifying the Key Environmental Factors and Bacterial Communities in Humification and Their Relationships during Green Waste Composting. Applied Ecology and Environmental Research, 19(1), 045-062.
Li, X., Xing, M., Yang, J., & Huang, Z. (2011). Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung. J Hazard Mater, 185(2-3), 740-748.
Lim, S. L., Lee, L. H., & Wu, T. Y. (2016). Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production, 111, 262-278.
Lim, S. L., & Wu, T. Y. (2015). Determination of maturity in the vermicompost produced from palm oil mill effluent using spectroscopy, structural characterization and thermogravimetric analysis. Ecological Engineering, 84, 515-519.
Lim, S. L., & Wu, T. Y. (2016). Characterization of Matured Vermicompost Derived from Valorization of Palm Oil Mill Byproduct. J Agric Food Chem, 64(8), 1761-1769.
Lim, S. L., Wu, T. Y., & Clarke, C. (2014). Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms. J Agric Food Chem, 62(3), 691-698.
Liu, F., Zhu, P., & Xue, J. (2012). Comparative Study on Physical and Chemical Characteristics of Sludge Vermicomposted by Eisenia Fetida. Procedia Environmental Sciences, 16, 418-423.
Lleó, T., Albacete, E., Barrena, R., Font, X., Artola, A., & Sánchez, A. (2013). Home and vermicomposting as sustainable options for biowaste management. Journal of Cleaner Production, 47, 70-76.
Lopez-Gonzalez, J. A., Suarez-Estrella, F., Vargas-Garcia, M. C., Lopez, M. J., Jurado, M. M., & Moreno, J. (2015). Dynamics of bacterial microbiota during lignocellulosic waste composting: Studies upon its structure, functionality and biodiversity. Bioresour Technol, 175, 406-416.
Lores, M., Gomezbrandon, M., Perezdiaz, D., & Dominguez, J. (2006). Using FAME profiles for the characterization of animal wastes and vermicomposts. Soil Biology and Biochemistry, 38(9), 2993-2996.
Lv, B., Xing, M., Yang, J., Qi, W., & Lu, Y. (2013). Chemical and spectroscopic characterization of water extractable organic matter during vermicomposting of cattle dung. Bioresour Technol, 132, 320-326.
Lv, B., Xing, M., Zhao, C., Yang, J., & Xiang, L. (2014). Towards understanding the stabilization process in vermicomposting using PARAFAC analysis of fluorescence spectra. Chemosphere, 117, 216-222.
M.S. Diallo, A. S., P. Gassman, J.L. Faulon, J.H. Johnson Jr., W.A. Goddard III, P.G. Hatcher. (2003). 3-D structural modeling of humic acids through experimental characterization, computer assisted structure elucidation and atomistic simulations. 1. Chelsea soil humic acid. Environ. Sci. Technol., 37(9), 1783-1793.
Malinska, K., Golanska, M., Caceres, R., Rorat, A., Weisser, P., & Slezak, E. (2017). Biochar amendment for integrated composting and vermicomposting of sewage sludge - The effect of biochar on the activity of Eisenia fetida and the obtained vermicompost. Bioresour Technol, 225, 206-214.
Manivannan, S., Balamurugan, M., Parthasarathi, K., Gunasekaran, G., & Ranganathan, L. (2009). Effect of vermicompost on soil fertility and crop productivity - Beans (Phaseolus vulgaris). Journal of environmental biology / Academy of Environmental Biology, India, 30, 275-281.
Marhuenda-Egea, F. C., Martinez-Sabater, E., Jorda, J., Moral, R., Bustamante, M. A., Paredes, C., & Perez-Murcia, M. D. (2007). Dissolved organic matter fractions formed during composting of winery and distillery residues: evaluation of the process by fluorescence excitation-emission matrix. Chemosphere, 68(2), 301-309.
Matos, G. D., & Arruda, M. A. Z. (2003). Vermicompost as natural adsorbent for removing metal ions from laboratory effluents. Process Biochemistry, 39(1), 81-88.
Michel, F. C., Pecchia, J. A., Rigot, J., & Keener, H. M. (2004). Mass and Nutrient Losses During the Composting Of Dairy Manure Amended with Sawdust or Straw. Compost Science & Utilization, 12(4), 323-334.
Moral, R., Paredes, C., Bustamante, M. A., Marhuenda-Egea, F., & Bernal, M. P. (2009). Utilisation of manure composts by high-value crops: safety and environmental challenges. Bioresour Technol, 100(22), 5454-5460.
Muktadirul Bari Chowdhury, A. K. M., Akratos, C. S., Vayenas, D. V., & Pavlou, S. (2013). Olive mill waste composting: A review. International Biodeterioration & Biodegradation, 85, 108-119.
Muscolo, A., Bovalo, F., Gionfriddo, F., & Nardi, S. (1999). Earthworm humic matter produces auxin-like effects on Daucus carota cell growth and nitrate metabolism. Soil Biology and Biochemistry, 31(9), 1303-1311.
Ndegwa, P. M., & Thompson, S. A. (2001). Integrating composting and vermicomposting in the treatment and bioconversion of biosolids. Bioresource Technology, 76(2), 107-112.
Neuhauser, E. F., Loehr, R. C., & Malecki, M. R. (1988). potential of earthworms for managing sewage sludge.
Pan, X., Song, W., & Zhang, D. (2010). Earthworms (Eisenia foetida, Savigny) mucus as complexing ligand for imidacloprid. Biology and Fertility of Soils, 46(8), 845-850.
Parthasarathi, K., Balamurugan, M., Prashija, K. V., Jayanthi, L., & Ameer Basha, S. (2016). Potential of Perionyx excavatus (Perrier) in lignocellulosic solid waste management and quality vermifertilizer production for soil health. International Journal of Recycling of Organic Waste in Agriculture, 5(1), 65-86.
Peña-Méndez, E. M., Havel, J., & Patočka, J. (2005). Humic substances - compounds of still unknown structure: applications in agriculture, industry, environment, and biomedicine. Journal of Applied Biomedicine, 3(1), 13-24.
Pettit, R. E. (2004). Organic matter, humus, humate, humic acid, fulvic acid and humin: their importance in soil fertility and plant health. CTI Research, 10, 1-7.
Prakash, M., & Karmegam, N. (2010). Vermistabilization of pressmud using Perionyx ceylanensis Mich. Bioresour Technol, 101(21), 8464-8468.
Pramanik, P., Bhattacharya, S., Bhattacharyya, P., & Banik, P. (2009). Phosphorous solubilization from rock phosphate in presence of vermicomposts in Aqualfs. Geoderma, 152(1-2), 16-22.
Pramanik, P., Ghosh, G. K., & Banik, P. (2009). Effect of microbial inoculation during vermicomposting of different organic substrates on microbial status and quantification and documentation of acid phosphatase. Waste Manag, 29(2), 574-578.
Reinecke, A. J., & Viljoen, S. A. (1990). The influence of feeding patterns on growth and reproduction of the vermicomposting earthworm Eisenia fetida (Oligochaeta). Biology and Fertility of Soils, 10(3), 184-187.
Richard, T. L., Hamelers, H. V. M., Veeken, A., & Silva, T. (2002). Moisture Relationships in Composting Processes. Compost Science & Utilization, 10(4), 286-302.
Rochfort, S., Ezernieks, V., Mele, P., & Kitching, M. (2015). NMR metabolomics for soil analysis provide complementary, orthogonal data to MIR and traditional soil chemistry approaches--a land use study. Magn Reson Chem, 53(9), 719-725.
Rodriguez, F. J., Schlenger, P., & Garcia-Valverde, M. (2014). A comprehensive structural evaluation of humic substances using several fluorescence techniques before and after ozonation. Part I: structural characterization of humic substances. Sci Total Environ, 476-477, 718-730.
Romero, E., Plaza, C., Senesi, N., Nogales, R., & Polo, A. (2007). Humic acid-like fractions in raw and vermicomposted winery and distillery wastes. Geoderma, 139(3-4), 397-406.
Said-Pullicino, D., Erriquens, F. G., & Gigliotti, G. (2007). Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Bioresour Technol, 98(9), 1822-1831.
Samal, K., Raj Mohan, A., Chaudhary, N., & Moulick, S. (2019). Application of vermitechnology in waste management: A review on mechanism and performance. Journal of Environmental Chemical Engineering, 7(5).
SÁnchez-Marañón, M., Soriano, M., Melgosa, M., Delgado, G., & Delgado, R. (2004). Quantifying the effects of aggregation, particle size and components on the colour of Mediterranean soils. European Journal of Soil Science, 55(3), 551-565.
Scheu, S. (1992). Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biology and Biochemistry, 24(11), 1113-1118.
Sellami, F., Hachicha, S., Chtourou, M., Medhioub, K., & Ammar, E. (2008). Maturity assessment of composted olive mill wastes using UV spectra and humification parameters. Bioresour Technol, 99(15), 6900-6907.
Sharma, K., & Garg, V. K. (2018). Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Bioresour Technol, 250, 708-715.
Sharma, S., Pradhan, K., Satya, S., Vasudevan, P., & Khas, H. (2005). Potentiality of Earthworms for Waste Management and in Other Uses - A Review.
Shi, W., Norton, J. M., Miller, B. E., & Pace, M. G. (1999). Effects of aeration and moisture during windrow composting on the nitrogen fertilizer values of dairy waste composts. Applied Soil Ecology, 11(1), 17-28.
Sierra, M. M., Giovanela, M., Parlanti, E., & Soriano-Sierra, E. J. (2005). Fluorescence fingerprint of fulvic and humic acids from varied origins as viewed by single-scan and excitation/emission matrix techniques. Chemosphere, 58(6), 715-733.
Silva, M. E., de Lemos, L. T., Nunes, O. C., & Cunha-Queda, A. C. (2014). Influence of the composition of the initial mixtures on the chemical composition, physicochemical properties and humic-like substances content of composts. Waste Manag, 34(1), 21-27.
Singh, A., Karmegam, N., Singh, G. S., Bhadauria, T., Chang, S. W., Awasthi, M. K., . . . Ravindran, B. (2020). Earthworms and vermicompost: an eco-friendly approach for repaying nature's debt. Environ Geochem Health, 42(6), 1617-1642.
Singh, R., Sharma, R. R., Kumar, S., Gupta, R. K., & Patil, R. T. (2008). Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria x ananassa Duch.). Bioresour Technol, 99(17), 8507-8511.
Singh, S., Singh, J., Kaur, A., Kaur, J., Vig, A. P., & Bhat, S. A. (2019). Nutrient recovery from pigeon dropping by using exotic earthworm Eisenia fetida. Sustainable Chemistry and Pharmacy, 12.
Smidt, E., & Meissl, K. (2007). The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag, 27(2), 268-276.
Sánchez-Monedero, M. A., Roig, A., Cegarra, J., & Bernal, M. P. (1999). Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology, 70(2), 193-201.
Song, G., Hayes, M. H. B., & Novotny, E. H. (2021). A two-year incubation study of transformations of crop residues into soil organic matter (SOM) and a procedure for the sequential isolation and the fractionation of components of SOM. Sci Total Environ, 763, 143034.
Song, X., Liu, M., Wu, D., Qi, L., Ye, C., Jiao, J., & Hu, F. (2014). Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Manag, 34(11), 1977-1983.
Soobhany, N., Mohee, R., & Garg, V. K. (2015). Comparative assessment of heavy metals content during the composting and vermicomposting of Municipal Solid Waste employing Eudrilus eugeniae. Waste Manag, 39, 130-145.
Spielvogel, S., Knicker, H., & Kögel‐Knabner, I. (2004). Soil organic matter composition and soil lightness. Journal of Plant Nutrition and Soil Science, 167(5), 545-555.
Srivastava, P. K., Gupta, M., Shikha, Singh, N., & Tewari, S. K. (2016). Amelioration of Sodic Soil for Wheat Cultivation Using Bioaugmented Organic Soil Amendment. Land Degradation & Development, 27(4), 1245-1254.
Srivastava, V., de Araujo, A. S. F., Vaish, B., Bartelt-Hunt, S., Singh, P., & Singh, R. P. (2016). Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev Environ Sci Biotechnol, 15(4), 677-696.
Srivastava, V., Goel, G., Thakur, V. K., Singh, R. P., Ferreira de Araujo, A. S., & Singh, P. (2020). Analysis and advanced characterization of municipal solid waste vermicompost maturity for a green environment. J Environ Manage, 255, 109914.
Srivastava, V., Ismail, S. A., Singh, P., & Singh, R. P. (2014). Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Reviews in Environmental Science and Bio/Technology, 14(2), 317-337.
Stevenson, F. J. (1994). Humus chemistry: genesis, composition, reactions: John Wiley & Sons.
Sudkolai, S. T., & Nourbakhsh, F. (2017). Urease activity as an index for assessing the maturity of cow manure and wheat residue vermicomposts. Waste Manag, 64, 63-66.
Suthar, S. (2007). Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials. Bioresour Technol, 98(6), 1231-1237.
Suthar, S. (2009). Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta). J Hazard Mater, 163(1), 199-206.
Suthar, S., & Gairola, S. (2014). Nutrient recovery from urban forest leaf litter waste solids using Eisenia fetida. Ecological Engineering, 71, 660-666.
Suthar, S., & Singh, S. (2008). Feasibility of vermicomposting in biostabilization of sludge from a distillery industry. Sci Total Environ, 394(2-3), 237-243.
Tian, W., Li, L., Liu, F., Zhang, Z., Yu, G., Shen, Q., & Shen, B. (2012). Assessment of the maturity and biological parameters of compost produced from dairy manure and rice chaff by excitation-emission matrix fluorescence spectroscopy. Bioresour Technol, 110, 330-337.
Tiquia, S. M., Tam, N. F. Y., & Hodgkiss, I. J. (1996). Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents. Bioresource Technology, 55(3), 201-206.
Tseng, D. Y., Vir, R., Traina, S. J., & Chalmers, J. J. (1996). A Fourier-transform infrared spectroscopic analysis of organic matter degradation in a bench-scale solid substrate fermentation (composting) system. Biotechnology and Bioengineering, 52(6), 661-671.
Tucker, P. (2005). Co-composting paper mill sludges with fruit and vegetable wastes. University of Paisley, Paisley.
Udovic, M., Plavc, Z., & Lestan, D. (2007). The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA. Chemosphere, 70(1), 126-134.
Urdaneta, C., Parra, L.-M. M., Matute, S., Garaboto, M. A., Barros, H., & Vázquez, C. (2008). Evaluation of vermicompost as bioadsorbent substrate of Pb, Ni, V and Cr for waste waters remediation using Total Reflection X-ray Fluorescence. Spectrochimica Acta Part B: Atomic Spectroscopy, 63(12), 1455-1460.
Valeur, B., & Berberan-Santos, M. N. (2012). Molecular fluorescence: principles and applications: John Wiley & Sons.
Vargas-Garcia, M. C., Suarez-Estrella, F., Lopez, M. J., & Moreno, J. (2010). Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag, 30(5), 771-778.
Veeken, A., Nierop, K., Wilde, V. d., & Hamelers, B. (2000). Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresource Technology, 72(1), 33-41.
Villar, I., Alves, D., Perez-Diaz, D., & Mato, S. (2016). Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Manag, 48, 409-417.
Wang, C., Tu, Q., Dong, D., Strong, P. J., Wang, H., Sun, B., & Wu, W. (2014). Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. J Hazard Mater, 280, 409-416.
Wang, L., Chen, X., Sun, W., Liang, J., Xu, X., & Tong, Z. (2013). Kinetic model for the catalytic disproportionation of pine oleoresin over Pd/C catalyst. Industrial Crops and Products, 49, 1-9.
Wang, L., Zhang, Y., Lian, J., Chao, J., Gao, Y., Yang, F., & Zhang, L. (2013). Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting. Bioresour Technol, 136, 281-287.
Wang, P., Changa, C. M., Watson, M. E., Dick, W. A., Chen, Y., & Hoitink, H. A. J. (2004). Maturity indices for composted dairy and pig manures. Soil Biology and Biochemistry, 36(5), 767-776.
Wang, S., Wang, Y., He, X., & Lu, Q. (2022). Degradation or humification: rethinking strategies to attenuate organic pollutants. Trends Biotechnol.
Wilson, M. A., Ellis, A. V., Lee, G. S. H., Rose, H. R., Lu, X., & Young, B. R. (1999). Structure of Molecular Weight Fractions of Bayer Humic Substances. 1. Low-Temperature Products. Industrial & Engineering Chemistry Research, 38(12), 4663-4674.
Wu, H., Zhou, Z., Zhang, Y., Chen, T., Wang, H., & Lu, W. (2012). Fluorescence-based rapid assessment of the biological stability of landfilled municipal solid waste. Bioresour Technol, 110, 174-183.
Wu, J., Zhao, Y., Qi, H., Zhao, X., Yang, T., Du, Y., . . . Wei, Z. (2017). Identifying the key factors that affect the formation of humic substance during different materials composting. Bioresour Technol, 244(Pt 1), 1193-1196.
Wu, J., Zhao, Y., Zhao, W., Yang, T., Zhang, X., Xie, X., . . . Wei, Z. (2017). Effect of precursors combined with bacteria communities on the formation of humic substances during different materials composting. Bioresour Technol, 226, 191-199.
Wu, L., & Ma, L. Q. (2002). Relationship between compost stability and extractable organic carbon. J Environ Qual, 31(4), 1323-1328.
Xi, B., Zhao, X., He, X., Huang, C., Tan, W., Gao, R., . . . Li, D. (2016). Successions and diversity of humic-reducing microorganisms and their association with physical-chemical parameters during composting. Bioresour Technol, 219, 204-211.
Xing, M., Li, X., Yang, J., Huang, Z., & Lu, Y. (2012). Changes in the chemical characteristics of water-extracted organic matter from vermicomposting of sewage sludge and cow dung. J Hazard Mater, 205-206, 24-31.
Yadav, A., & Garg, V. K. (2019). Biotransformation of bakery industry sludge into valuable product using vermicomposting. Bioresour Technol, 274, 512-517.
Yadav, K. D., Tare, V., & Ahammed, M. M. (2011). Vermicomposting of source-separated human faeces by Eisenia fetida: effect of stocking density on feed consumption rate, growth characteristics and vermicompost production. Waste Manag, 31(6), 1162-1168.
Yu, G. H., He, P. J., & Shao, L. M. (2010). Novel insights into sludge dewaterability by fluorescence excitation-emission matrix combined with parallel factor analysis. Water Res, 44(3), 797-806.
Yu, Z., Tang, J., Liao, H., Liu, X., Zhou, P., Chen, Z., . . . Zhou, S. (2018). The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour Technol, 265, 146-154.
Yuvaraj, A., Thangaraj, R., Ravindran, B., Chang, S. W., & Karmegam, N. (2021). Centrality of cattle solid wastes in vermicomposting technology - A cleaner resource recovery and biowaste recycling option for agricultural and environmental sustainability. Environ Pollut, 268(Pt A), 115688.
Zbytniewski, R., & Buszewski, B. (2005a). Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 1: chemical and spectroscopic properties. Bioresour Technol, 96(4), 471-478.
Zbytniewski, R., & Buszewski, B. (2005b). Characterization of natural organic matter (NOM) derived from sewage sludge compost. Part 2: multivariate techniques in the study of compost maturation. Bioresour Technol, 96(4), 479-484.
Zbytniewski, R., Kosobucki, P., Kowalkowski, T., & Buszewski, B. (2002). The comparison study of compost and natural organic matter samples. Environmental Science and Pollution Research, 9(1), 68-74.
Zhang, C., Xu, Y., Zhao, M., Rong, H., & Zhang, K. (2018). Influence of inoculating white-rot fungi on organic matter transformations and mobility of heavy metals in sewage sludge based composting. J Hazard Mater, 344, 163-168.
Zhang, D., Chen, Y., Ma, Y., Guo, L., Sun, J., & Tong, J. (2016). Earthworm epidermal mucus: Rheological behavior reveals drag-reducing characteristics in soil. Soil and Tillage Research, 158, 57-66.
Zhang, L., & Sun, X. (2018). Influence of sugar beet pulp and paper waste as bulking agents on physical, chemical, and microbial properties during green waste composting. Bioresour Technol, 267, 182-191.
Zhang, Y., Yue, D., & Ma, H. (2015). Darkening mechanism and kinetics of humification process in catechol-Maillard system. Chemosphere, 130, 40-45.
Zhang, Z., Zhao, Y., Yang, T., Wei, Z., Li, Y., Wei, Y., . . . Wang, L. (2019). Effects of exogenous protein-like precursors on humification process during lignocellulose-like biomass composting: Amino acids as the key linker to promote humification process. Bioresour Technol, 291, 121882.
Zhi-Wei, S., Tao, S., Wen-Jing, D., & Jing, W. (2019). Investigation of rice straw and kitchen waste degradation through vermicomposting. J Environ Manage, 243, 269-272.
Zhou, H., Meng, H., Zhao, L., Shen, Y., Hou, Y., Cheng, H., & Song, L. (2018). Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting. Bioresour Technol, 258, 279-286.
Zhou, S., Chen, S., Yuan, Y., & Lu, Q. (2015). Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity. Sci Rep, 5, 17067.
Zhou, Y., Selvam, A., & Wong, J. W. (2014). Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresour Technol, 168, 229-234.
Zhu, W., Yao, W., & Du, W. (2016). Heavy metal variation and characterization change of dissolved organic matter (DOM) obtained from composting or vermicomposting pig manure amended with maize straw. Environ Sci Pollut Res Int, 23(12), 12128-12139.
Zucconi, F. d. (1987). Compost specifications for the production and characterization of compost from municipal solid waste. Compost: production, quality and use, 30-50.
呂佾倉. (2019). 以螢光熄滅效應探討腐植酸與不同種類金屬離子之電性中和能力. (碩士). 國立聯合大學, 苗栗縣
林健筌. (2020). 以螢光分析技術評估堆肥腐熟程度. (碩士). 國立聯合大學, 苗栗縣
陳玉庭. (2019). 以螢光熄滅效應探討不同芳香族有機物之電性中和能力. (碩士). 國立聯合大學, 苗栗縣
電子全文 電子全文(網際網路公開日期:20270902)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top