跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馮庭禹
研究生(外文):Feng, Ting-Yu
論文名稱:以具車輪尺寸之三質量車輛模型進行車橋互制行為分析
論文名稱(外文):Wheel-Size Incorporated Three-Mass Vehicle Model for VBI Analysis
指導教授:楊子儀楊子儀引用關係
指導教授(外文):Yang, Judy P
口試日期:2022-07-29
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:49
中文關鍵詞:車橋互制系統車輪尺寸車橋接觸點粗糙度三質量車輛
外文關鍵詞:vehicle-bridge interactionwheel sizecontact pointroughnessthree-mass vehicle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:48
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
在橋梁健康監測研究之發展,近幾年已經逐漸由傳統的直接量測法轉變為間接量測法,其中車輛掃描法即是間接量測法中很大宗的研究主題。雖然過去文獻中有許多車輛模型之提出,但為了要更加貼近真實車輛之情況以符合工程實務之應用,本研究提出一個新的車輛模型,即具車輪尺寸之三質量車輛模型,特別是在路面粗糙度存在時,車輪尺寸之影響更顯著,故須考慮車輪實際接觸點之位置。在所提出之車橋互制系統中,假設車輪都是剛性質量,且前後車輪之尺寸與質量皆相同。由於車輛在路面上之不同位置經歷由粗糙度造成之不同程度起伏,車輪實際接觸點與兩個車輪之抬升高度均為未知,因此,本研究同時提出計算上述未知參數之演算法。在數值分析部分,探討以下參數:車輪尺寸對於車橋反應之影響、車輪實際路徑、車輛阻尼以及俯仰效應對頻率識別之影響。數值結果顯示採用較大的車輪會產生較小的橋梁與車輛垂直反應,符合現實生活中採用較大之車輪尺寸可提升乘車舒適度。此外,與傳統不具車輪尺寸之三質量模型相比,所提出之模型具有更高之橋頻識別精度,即使在最顛頗的路面粗糙度下,第一橋頻與第三橋頻均能被清楚識別。
In the structural health monitoring, the research direction has been changed from the direct measurement to indirect method in recent years. The vehicle scanning method is one of popular indirect methods. Although there were lots of vehicle models proposed in the past, to mimic the vehicle for practical applications, this study proposes a new vehicle model, i.e. wheel size incorporated three-mass vehicle model. In the presence of pavement roughness, the effect of wheel size becomes pronounced, and the real contact points of wheels need to be considered. In the proposed VBI system, the wheels are assumed to be rigid and have the same dimension. As the vehicle undergoes up-and-down movement during the passage on the bridge, the real contact points of wheels and lifts of wheels are unknown. Thus, this study provides an algorithm to determine these unknown parameters in the simulation. In the numerical analysis, the following parameters are investigated: the influence of wheel size on the dynamic responses of the system, the moving paths of wheels, vehicle damping and pitching effect on the identification of frequencies. For wheels of larger size, the numerical results show that the dynamic responses of bridge and vehicle are reduced while better ride comfort is provided. In comparison with the traditional three-mass vehicle model, the proposed vehicle model has higher resolution in the frequency identification. The first and third bridge frequencies can be clearly identified even in the severest condition of pavement roughness.
目錄
摘要................................................................ i
Abstract.............................................................ii
目錄............................................................... iv
圖目錄..............................................................v
表目錄.............................................................vii
第一章 序論.........................................................1
1.1 研究動機與目的 ..............................................1
1.2 文獻回顧 ....................................................1
1.3 論文架構 ....................................................4
第二章 車橋互制系統模型理論.........................................5
2.1 VBI 系統的動力方程式.........................................6
2.2 求解 VBI 系統方程式..........................................10
2.3 決定與偏心距相關參數之演算法................................16
第三章 例題研究與參數探討..........................................18
3.1 數值模型驗證 ...............................................18
3.2 與傳統三質量車輛模型比較 ...................................21
3.3 輪子尺寸之影響 .............................................24
3.4 頻率識別 ...................................................29
3.5 車輛阻尼之影響 .............................................36
第四章 結論與未來展望..............................................44
4.1 結論 .......................................................44
4.2 未來展望 ...................................................45
參考文獻...........................................................47
[1] Timoshenko, S. P. (1922). CV. On the forced vibrations of bridges. The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 43(257),
1018-1019.
[2] Nikkhoo, A., Rofooei, F. R., & Shadnam, M. R. (2007). Dynamic behavior and
modal control of beams under moving mass. Journal of Sound and Vibration, 306(3-
5), 712-724.
[3] Yang, Y. B., & Yang, J. P. (2018). State-of-the-art review on modal identification
and damage detection of bridges by moving test vehicles. International Journal of
Structural Stability and Dynamics, 18(02), 1850025.
[3] Yang, Y. B., Lin, C. W., & Yau, J. D. (2004). Extracting bridge frequencies from the
dynamic response of a passing vehicle. Journal of Sound and Vibration, 272(3-5),
471-493.
[4] Yang, Y. B., Yang, J. P., Wu, Y., & Zhang, B. (2019). Vehicle scanning method for
bridges. John Wiley & Sons.
[5] Wang, Z. L., Yang, J. P., Shi, K., Xu, H., Qiu, F. Q., & Yang, Y. B. (2022). Recent
Advances in Researches on Vehicle Scanning Method for Bridges. International
Journal of Structural Stability and Dynamics, DOI: 10.1142/S0219455422300051.
[6] Yang, Y. B., & Lin, C. W. (2005). Vehicle–bridge interaction dynamics and potential
applications. Journal of sound and vibration, 284(1-2), 205-226.
[7] Lin, C. W., & Yang, Y. B. (2005). Use of a passing vehicle to scan the fundamental
bridge frequencies: An experimental verification. Engineering Structures, 27(13),
1865-1878.
[8] Yang, Y. B., Li, Y. C., & Chang, K. C. (2012). Effect of road surface roughness on
the response of a moving vehicle for identification of bridge frequencies. Interaction
and multiscale mechanics, 5(4), 347-368.
[9] Kim, C. W., Kawatani, M., & Kim, K. B. (2005). Three-dimensional dynamic
analysis for bridge–vehicle interaction with roadway roughness. Computers &
structures, 83(19-20), 1627-1645.
[10] Yang, J. P., & Lee, W. C. (2018). Damping effect of a passing vehicle for indirectly
measuring bridge frequencies by EMD technique. International Journal of
Structural Stability and Dynamics, 18(01), 1850008.
[11] Yang, J. P., & Chen, B. H. (2018). Two-mass vehicle model for extracting bridge
frequencies. International Journal of Structural Stability and Dynamics, 18(04),
1850056.
[12] Kang, S. W., Kim, J. S., & Kim, G. W. (2019). Road roughness estimation based
48
on discrete Kalman filter with unknown input. Vehicle System Dynamics, 57(10),
1530-1544.
[13] He, Y., & Yang, J. P. (2021). Using Kalman filter to estimate the pavement profile
of a bridge from a passing vehicle considering their interaction. Acta
Mechanica, 232(11), 4347-4362.
[14] Yang, J. P., & Chen, B. L. (2019). Rigid-mass vehicle model for identification of
bridge frequencies concerning pitching effect. International Journal of Structural
Stability and Dynamics, 19(02), 1950008.
[15] He, Y., & Yang, J. P. (2022). Using acceleration residual spectrum from single twoaxle vehicle at contact points to extract bridge frequencies. Engineering
Structures, 266, 114538.
[16] Yang, J. P., & Sun, J. Y. (2020). Pitching effect of a three-mass vehicle model for
analyzing vehicle-bridge interaction. Engineering Structures, 224, 111248.
[17] Yang, J. P. (2021). Theoretical formulation of three-mass vehicle model for
vehicle-bridge interaction. International Journal of Structural Stability and
Dynamics, 21(07), 2171004.
[18] Yang, J. P., & Cao, C. Y. (2020). Wheel size embedded two-mass vehicle model
for scanning bridge frequencies. Acta Mechanica, 231(4), 1461-1475.
[19] Chang, K. C., Wu, F. B., & Yang, Y. B. (2011). Disk model for wheels moving
over highway bridges with rough surfaces. Journal of Sound and Vibration, 330(20),
4930-4944.
[20] ISO 8608. Mechanical Vibration-road Surface Profiles-reporting of Measured Data.
Geneva: International Organization for Standardization; 1995.
[21] Yang, Y. B., Chang, C. H., & Yau, J. D. (1999). An element for analysing vehicle–
bridge systems considering vehicle's pitching effect. International Journal for
Numerical Methods in Engineering, 46(7), 1031-1047.
[22] Yang, J. P., & Wu, C. H. (2021). Vehicle-bridge interaction system with nonuniform beams. International Journal of Structural Stability and Dynamics, 21(12),
2150170.
[23] Yang, Y. B., Li, Y. C., & Chang, K. C. (2012). Effect of road surface roughness on
the response of a moving vehicle for identification of bridge frequencies. Interaction
and multiscale mechanics, 5(4), 347-368.
[24] Yang, Y. B., Zhang, B., Qian, Y., & Wu, Y. (2018). Contact-point response for
modal identification of bridges by a moving test vehicle. International Journal of
Structural Stability and Dynamics, 18(05), 1850073.
[25] Yang, J. P., & Lee, W. C. (2018). Damping effect of a passing vehicle for indirectly
measuring bridge frequencies by EMD technique. International Journal of
Structural Stability and Dynamics, 18(01), 1850008.
49
[26]李唯鈞(2016),「以 EMD 識別橋梁基本振動頻率並探討移動車輛阻尼、質量、
速度之影響」,國立交通大學,碩士論文。
[27]陳柏豪(2017),「以具雙質量車輛模型識別橋梁頻率與頻譜分析」,國立交通
大學,碩士論文。
[28]曹成翊(2019),「以具輪子尺寸之雙質量車輛模型識別橋梁頻率」,國立交通
大學,碩士論文。
[29]孫聚一(2020),「考慮俯仰效應之三質量車輛模型分析車橋互制行為」,國立
交通大學,碩士論文。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top