跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉方晴
研究生(外文):Liu, Fang-Ching
論文名稱:雙固化系統和二氧化矽添加對於三維列印活動義齒基底樹脂材料之機械性質影響
論文名稱(外文):Effects of dual-cured system and silicon dioxide on the mechanical properties of denture base resin in 3D printing
指導教授:林元敏
指導教授(外文):Lin, Yuan-Min
口試委員:李士元林宥成
口試委員(外文):Lee, Shyh-YuanLin, Yu-Cheng
口試日期:2022-01-05
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:牙醫學系
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:89
中文關鍵詞:三維列印活動義齒基底矽烷化二氧化矽雙聚合系統機械性質
外文關鍵詞:3D printingdenture basesilanizationsilica dioxidedual-cured systemmechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
三維列印具有快速製造、簡易流程、可客製化等優點,因此廣泛應用於許多領域,在臨床牙科中,三維列印製造之活動義齒能夠大幅縮減製作流程。然而,與傳統活動義齒相比,三維列印的活動義齒擁有較差之機械性質。本實驗的研究目標為,藉由添加二氧化矽以及引入雙聚合系統至光固化樹脂中,以增強三維列印的活動義齒基底之機械性質,使其同時具有高強度及高韌性之性質。過程中,因二氧化矽的添加會導致團聚現象發生,而以三種濃度之3-甲基丙烯醯氧基丙基三甲氧基矽烷與二氧化矽進行矽烷化,並以最好矽烷化效果之二氧化矽及未矽烷化之二氧化矽與樹脂混合製備。另外,雙聚合系統則以甲基丙烯酸羥乙酯及異佛爾酮二異氰酸酯與樹脂配製而成,兩者之三種莫耳比及四種濃度之混合液均進行測試。最後,將最佳效果之雙聚合系統與二氧化矽均勻混合。上述三種製備方法均與原先三維列印材料進行比對,測試包含黏度測試、抗彎曲測試、斷裂韌性測試、蕭式硬度以及基底與義齒間的黏合測試。實驗結果顯示,雙聚合樹脂具有良好的強度、斷裂韌性及黏合強度,而HEMA-IPDI-20 (4:1)和 HEMA-IPDI-30(4:1)則表現出最為優秀之機械性質,而含有二氧化矽之複合材料較無顯著差異。綜合上述測試結果,若雙聚合樹脂在未來臨床測試完整化後,將有潛力運用於永久義齒基底材料。
With the advantages of rapid manufacturing speed, simplified processing, and customization, 3D printing has been widely applied in many fields. The 3D printing technique facilitates the fabrication of removable dentures, especially for denture bases in dentistry. However, current 3D printing denture bases has poor mechanical properties compared to conventional techniques. This study aims to enhance 3D printed denture bases with higher strength and toughness by adding unsilanized silica, silanized silica, and subjoining the dual-cured system into resins. Because of the agglomeration, silanization of silica dioxide with 3-methacyloxypropyltrimethoxysilane (3-MPS/γ-MPS) was prepared into three different γ-MPS contents and further prepared composites with silica. Dual-cured resins were formulated by mixing 2-hydroxyethyl methacrylate (2-HEMA), isophorone diisocyanate (IPDI), and 3D printing resins with the three molar ratios of 2-HEMA and IPDI, as well as the four percentages of resin and HEMA-IPDI mixtures. Two dual-cured resins and silica were also integrated into the resin and formed dual-cured composites in the final stage. Dual-cured resins presented positive effects on the flexural properties, fracture toughness, hardness, and bonding strength, while all composites showed no significant differences. HEMA-IPDI-20 (4:1) and HEMA-IPDI-30 (4:1) showed better performance on mechanical properties. In the future, dual-cured resins are expected to be used for denture bases with more testings.
致謝 i
中文摘要 ii
Abstract iii
Table of Contents iv
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Denture bases 2
1.2.1 History of denture bases 2
1.2.2 Fabrications of denture bases 3
1.2.3 Mechanical properties of denture bases 4
1.3 3D printing technique 5
1.3.1 Problems of denture bases in vat photopolymerization 5
1.3.2 Mechanical properties of post-processing in 3D printing 6
1.3.3 3D printing resins in vat photopolymerization 7
1.4 Silanization of silicon dioxide 8
1.4.1 Silicon dioxide 8
1.4.2 3-Methacyloxypropyltrimethoxysilane (3-MPS/γ-MPS) 9
1.4.3 Mechanisms of the silanization for silica 10
1.4.4 Solvents of the direct condensation mechanisms 11
1.5 Dual cure systems 12
1.5.1 Types of dual cure systems 12
1.5.2 Applications of dual-cured 3D printing materials 14
1.5.3 Formula and reaction of dual-cured resins 14
1.6 Research objective 19
Chapter 2 Experimental Methods 20
2.1 Flow chart of experiment 20
2.2 Surface modification of silica nanoparticles 21
2.3 Sample preparation for 3D printing technology 23
2.3.1 Formulation of printing resins 23
2.3.2 Fabrication of the testing samples 27
2.4 Fourier-transform infrared spectroscopy (FTIR) analysis 28
2.5 Characterization of silica nanoparticles 29
2.5.1 Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) 29
2.5.2 Thermogravimetric analysis (TGA) 30
2.5.3 Transmission electron microscopy (TEM) 31
2.5.4 Dynamic light scattering (DLS) 31
2.6 Characterization of physical and mechanical properties 32
2.6.1 Viscosity test 32
2.6.2 Three-point bending test 32
2.6.3 Hardness measurement 36
2.6.4 Shear bonding test 37
2.7 Statistical analysis 38
Chapter 3 Results 39
3.1 Identification of the silanized silica nanoparticles 39
3.1.1 Fourier-transform infrared spectroscopy (FTIR) analysis 39
3.1.2 Scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) 40
3.1.3 Transmission electron microscopes (TEM) 43
3.1.4 Thermogravimetric analysis (TGA) 44
3.2 Mechanical properties of different post-processing 46
3.2.1 Flexural properties 46
3.2.2 Fracture toughness 47
3.3 Characterization of the composites with silica 48
3.3.1 Viscosity 48
3.3.2 Dynamic light scattering (DLS) 49
3.3.3 Flexural properties 50
3.3.4 Fracture toughness 51
3.3.5 Hardness measurement 52
3.4 Characterization of the dual-cured resins 53
3.4.1 Fourier-transform infrared spectroscopy (FTIR) analysis 53
3.4.2 Viscosity 56
3.4.3 Flexural properties 57
3.4.4 Fracture toughness 59
3.4.5 Hardness measurement 60
3.4.6 Shear bonding test 61
3.5 Characterization of dual-cured composites 62
3.5.1 Viscosity 62
3.5.2 Flexural properties 64
3.5.3 Fracture toughness 65
3.5.4 Hardness measurement 66
3.5.5 Shear bonding test 67
Chapter 4 Discussions 68
4.1 Effects of silanization 68
4.2 Effects of silica particles in resins 68
4.3 Effects of dual-cured resins 70
4.4 Comparison of the commercial printing base materials 71
4.5 Research limitations 75
Chapter 5 Conclusion 77
References 78
Appendix 87
Cytotoxicity test of dual-cured resins by MTT assay 87
1. Chen, Y.-F., Y.-H. Yang, J.-H. Chen, H.-E. Lee, Y.-C. Lin, J. Ebinger, et al., The impact of complete dentures on the oral health-related quality of life among the elderly. Journal of Dental Sciences, 2012. 7(3): p. 289-295.
2. Kattadiyil, M.T., R. Jekki, C.J. Goodacre, and N.Z. Baba, Comparison of treatment outcomes in digital and conventional complete removable dental prosthesis fabrications in a predoctoral setting. The Journal of prosthetic dentistry, 2015. 114(6): p. 818-825.
3. International, A., F2792-12a-Standard Terminology for Additive Manufacturing Technologies. 2013.
4. Ngo, T.D., A. Kashani, G. Imbalzano, K.T. Nguyen, and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Composites Part B: Engineering, 2018. 143: p. 172-196.
5. Quan, H., T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, Photo-curing 3D printing technique and its challenges. Bioactive Materials, 2020. 5(1): p. 110-115.
6. Fernández-Francos, X., O. Konuray, X. Ramis, À. Serra, and S. De la Flor, Enhancement of 3D-Printable Materials by Dual-Curing Procedures. Materials, 2021. 14(1): p. 107.
7. Gad, M.M., S.M. Fouda, F.A. Al-Harbi, R. Näpänkangas, and A. Raustia, PMMA denture base material enhancement: a review of fiber, filler, and nanofiller addition. International journal of nanomedicine, 2017. 12: p. 3801.
8. Chen, S.-G., J. Yang, Y.-G. Jia, B. Lu, and L. Ren, TiO2 and PEEK reinforced 3D printing PMMA composite resin for dental denture base applications. Nanomaterials, 2019. 9(7): p. 1049.
9. Lu, C., C. Wang, J. Yu, J. Wang, and F. Chu, Two‐Step 3 D‐Printing Approach toward Sustainable, Repairable, Fluorescent Shape‐Memory Thermosets Derived from Cellulose and Rosin. ChemSusChem, 2020. 13(5): p. 893-902.
10. Zhao, J. and X. Wang, Dental prostheses, in Advanced ceramics for dentistry. 2014, Elsevier. p. 23-49.
11. Tandon, R., S. Gupta, and S.K. Agarwal, Denture base materials: From past to future. Indian J Dent Sci, 2010. 2(2): p. 33-9.
12. Srinivasan, M., P. Kamnoedboon, G. McKenna, L. Angst, M. Schimmel, M. Özcan, et al., CAD-CAM Removable Complete Dentures: A systematic review and meta-analysis of trueness of fit, biocompatibility, mechanical properties, surface characteristics, color stability, time-cost analysis, clinical and patient-reported outcomes. Journal of Dentistry, 2021: p. 103777.
13. Standardization, I.O.f., Dentistry-Base polymers-Part 1:Denture base polymers. 2013.
14. Powers, J.M. and J.C. Wataha, Dental Materials-E-Book: Properties and Manipulation. 2014: Elsevier Health Sciences.
15. Han, S.Y., Y.-H. Moon, and J. Lee, Shear bond strength between CAD/CAM denture base resin and denture artificial teeth when bonded with resin cement. The Journal of Advanced Prosthodontics, 2020. 12(5): p. 251.
16. Li, P., P. Krämer-Fernandez, A. Klink, Y. Xu, and S. Spintzyk, Repairability of a 3D printed denture base polymer: Effects of surface treatment and artificial aging on the shear bond strength. Journal of the Mechanical Behavior of Biomedical Materials, 2021. 114: p. 104227.
17. International, A., D2240-15-Standard Test Method for Rubber Property-Durometer Hardness. 2017.
18. Manapat, J.Z., Q. Chen, P. Ye, and R.C. Advincula, 3D printing of polymer nanocomposites via stereolithography. Macromolecular Materials and Engineering, 2017. 302(9): p. 1600553.
19. Mendes-Felipe, C., D. Patrocinio, J.M. Laza, L. Ruiz-Rubio, and J.L. Vilas-Vilela, Evaluation of postcuring process on the thermal and mechanical properties of the Clear02™ resin used in stereolithography. Polymer Testing, 2018. 72: p. 115-121.
20. Roppolo, I., A. Chiappone, A. Angelini, S. Stassi, F. Frascella, C. Pirri, et al., 3D printable light-responsive polymers. Materials Horizons, 2017. 4(3): p. 396-401.
21. Ligon, S.C., R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing. Chemical reviews, 2017. 117(15): p. 10212-10290.
22. Dawood, A., B.M. Marti, V. Sauret-Jackson, and A. Darwood, 3D printing in dentistry. British dental journal, 2015. 219(11): p. 521-529.
23. Tasaka, A., S. Matsunaga, K. Odaka, K. Ishizaki, T. Ueda, S. Abe, et al., Accuracy and retention of denture base fabricated by heat curing and additive manufacturing. Journal of prosthodontic research, 2019. 63(1): p. 85-89.
24. Bhushan, B. and M. Caspers, An overview of additive manufacturing (3D printing) for microfabrication. Microsystem Technologies, 2017. 23(4): p. 1117-1124.
25. Xu, X., A. Awad, P. Robles-Martinez, S. Gaisford, A. Goyanes, and A.W. Basit, Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release, 2021. 329: p. 743-757.
26. Prpić, V., Z. Schauperl, A. Ćatić, N. Dulčić, and S. Čimić, Comparison of Mechanical Properties of 3D‐Printed, CAD/CAM, and Conventional Denture Base Materials. Journal of Prosthodontics, 2020. 29(6): p. 524-528.
27. Jindal, P., M. Juneja, D. Bajaj, F.L. Siena, and P. Breedon, Effects of post-curing conditions on mechanical properties of 3D printed clear dental aligners. Rapid Prototyping Journal, 2020.
28. Kim, D., J.-S. Shim, D. Lee, S.-H. Shin, N.-E. Nam, K.-H. Park, et al., Effects of post-curing time on the mechanical and color properties of three-dimensional printed crown and bridge materials. Polymers, 2020. 12(11): p. 2762.
29. Green, B., R. McLeod, and A. Guymona. Improving anisotropic properties of objects printed via stereolithography. in ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY. 2018. AMER CHEMICAL SOC 1155 16TH ST, NW, WASHINGTON, DC 20036 USA.
30. Park, C.-H., S.-W. Lee, J.-W. Park, and H.-J. Kim, Preparation and characterization of dual curable adhesives containing epoxy and acrylate functionalities. Reactive and Functional Polymers, 2013. 73(4): p. 641-646.
31. Ren, Y., Y. Dong, R. Yang, and Y. Yao, Preparation and properties of ultraviolet/thermal dual-curable polyurethane acrylate. International Journal of Adhesion and Adhesives, 2020. 99: p. 102580.
32. Uzcategui, A.C., A. Muralidharan, V.L. Ferguson, S.J. Bryant, and R.R. McLeod, Understanding and improving mechanical properties in 3D printed parts using a dual‐cure acrylate‐based resin for stereolithography. Advanced engineering materials, 2018. 20(12): p. 1800876.
33. Kim, H., S. Han, and Y. Seo, Novel Dual-Curing Process for a Stereolithographically Printed Part Triggers a Remarkably Improved Interlayer Adhesion and Excellent Mechanical Properties. Langmuir, 2020. 36(31): p. 9250-9258.
34. Anastasio, R., W. Peerbooms, R. Cardinaels, and L. Van Breemen, Characterization of ultraviolet-cured methacrylate networks: from photopolymerization to ultimate mechanical properties. Macromolecules, 2019. 52(23): p. 9220-9231.
35. Gonçalves, F., Y. Kawano, C. Pfeifer, J.W. Stansbury, and R.R. Braga, Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites. European journal of oral sciences, 2009. 117(4): p. 442-446.
36. Barszczewska-Rybarek, I.M., A guide through the dental dimethacrylate polymer network structural characterization and interpretation of physico-mechanical properties. Materials, 2019. 12(24): p. 4057.
37. Dietlin, C., S. Schweizer, P. Xiao, J. Zhang, F. Morlet-Savary, B. Graff, et al., Photopolymerization upon LEDs: new photoinitiating systems and strategies. Polymer Chemistry, 2015. 6(21): p. 3895-3912.
38. De Oliveira, D.C.R.S., M.G. Rocha, A. Gatti, A.B. Correr, J.L. Ferracane, and M.A.C. Sinhoret, Effect of different photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. Journal of dentistry, 2015. 43(12): p. 1565-1572.
39. Neumann, M.G., C.C. Schmitt, G.C. Ferreira, and I.C. Corrêa, The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dental Materials, 2006. 22(6): p. 576-584.
40. Pongprueksa, P., V. Miletic, H. Janssens, K.L. Van Landuyt, J. De Munck, L. Godderis, et al., Degree of conversion and monomer elution of CQ/amine and TPO adhesives. Dental Materials, 2014. 30(6): p. 695-701.
41. Miao, X., Y. Li, Q. Zhang, M. Zhu, and H. Wang, Low shrinkage light curable dental nanocomposites using SiO2 microspheres as fillers. Materials Science and Engineering: C, 2012. 32(7): p. 2115-2121.
42. Sideridou, I.D. and M.M. Karabela, Effect of the amount of 3-methacyloxypropyltrimethoxysilane coupling agent on physical properties of dental resin nanocomposites. Dental Materials, 2009. 25(11): p. 1315-1324.
43. Timpe, N., H. Fullriede, L. Borchers, M. Stiesch, P. Behrens, and H. Menzel, Nanoporous silica nanoparticles with spherical and anisotropic shape as fillers in dental composite materials. BioNanoMaterials, 2014. 15(3-4): p. 89-99.
44. Du, M. and Y. Zheng, Modification of silica nanoparticles and their application in UDMA dental polymeric composites. Polymer composites, 2007. 28(2): p. 198-207.
45. Song, S.Y., M.S. Park, J.W. Lee, and J.S. Yun, A study on the rheological and mechanical properties of photo-curable ceramic/polymer composites with different silane coupling agents for SLA 3D printing technology. Nanomaterials, 2018. 8(2): p. 93.
46. Liu, Y., Y. Lin, T. Jiao, G. Lu, and J. Liu, Photocurable modification of inorganic fillers and their application in photopolymers for 3D printing. Polymer Chemistry, 2019. 10(46): p. 6350-6359.
47. Karci, M., N. Demir, and S. Yazman, Evaluation of flexural strength of different denture base materials reinforced with different nanoparticles. Journal of Prosthodontics, 2019. 28(5): p. 572-579.
48. Chen, S.-Y. and W.-M. Liang, Effects of fillers on fiber reinforced acrylic denture base resins. Mid-Taiwan Journal of Medicine, 2004. 9(4): p. 203-210.
49. Balos, S., T. Puskar, M. Potran, B. Milekic, D. Djurovic Koprivica, J. Laban Terzija, et al., Modulus, strength and cytotoxicity of PMMA-silica nanocomposites. Coatings, 2020. 10(6): p. 583.
50. da Silva, L.H., S.A. Feitosa, M.C. Valera, M.A. de Araujo, and R.N. Tango, Effect of the addition of silanated silica on the mechanical properties of microwave heat‐cured acrylic resin. Gerodontology, 2012. 29(2): p. e1019-e1023.
51. Karabela, M.M. and I.D. Sideridou, Effect of the structure of silane coupling agent on sorption characteristics of solvents by dental resin-nanocomposites. dental materials, 2008. 24(12): p. 1631-1639.
52. Chen, T. and G. Brauer, Solvent effects on bonding organo-silane to silica surfaces. Journal of Dental Research, 1982. 61(12): p. 1439-1443.
53. Halvorson, R.H., R.L. Erickson, and C.L. Davidson, The effect of filler and silane content on conversion of resin-based composite. Dental Materials, 2003. 19(4): p. 327-333.
54. Aydınoğlu, A. and A.B.H. Yoruç, Effects of silane-modified fillers on properties of dental composite resin. Materials Science and Engineering: C, 2017. 79: p. 382-389.
55. Jiang, J., W. Wang, H. Shen, J. Wang, and J. Cao, Characterization of silica particles modified with γ-methacryloxypropyltrimethoxysilane. Applied Surface Science, 2017. 397: p. 104-111.
56. Hong, R., H. Fu, Y. Zhang, L. Liu, J. Wang, H. Li, et al., Surface‐modified silica nanoparticles for reinforcement of PMMA. Journal of Applied Polymer Science, 2007. 105(4): p. 2176-2184.
57. Liu, Q., J. Ding, D.E. Chambers, S. Debnath, S.L. Wunder, and G.R. Baran, Filler‐coupling agent‐matrix interactions in silica/polymethylmethacrylate composites. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2001. 57(3): p. 384-393.
58. Matinlinna, J.P., C.Y.K. Lung, and J.K.H. Tsoi, Silane adhesion mechanism in dental applications and surface treatments: A review. Dental materials, 2018. 34(1): p. 13-28.
59. Florea, N.-M., A. Lungu, E. Vasile, and H. Iovu, The influence of nanosilica functionalization on the properties of hybrid nanocomposites. High Performance Polymers, 2013. 25(1): p. 61-69.
60. Konuray, O., X. Fernández-Francos, X. Ramis, and À. Serra, State of the art in dual-curing acrylate systems. Polymers, 2018. 10(2): p. 178.
61. Russo, C., X. Fernández-Francos, and S. De la Flor, Rheological and mechanical characterization of dual-curing thiol-acrylate-epoxy thermosets for advanced applications. Polymers, 2019. 11(6): p. 997.
62. Zhao, T., R. Yu, X. Li, Y. Zhang, X. Yang, X. Zhao, et al., A comparative study on 3D printed silicone-epoxy/acrylate hybrid polymers via pure photopolymerization and dual-curing mechanisms. Journal of Materials Science, 2019. 54(6): p. 5101-5111.
63. Ramis, X., X. Fernández-Francos, S. De La Flor, F. Ferrando, and À. Serra, Click-based dual-curing thermosets and their applications, in Thermosets. 2018, Elsevier. p. 511-541.
64. Stansbury, J. and C. Bowman, The Progress in Development of Dental Restorative Materials. Materials for Biomedical Applications, 2010: p. 72.
65. Zhao, J., Q. Li, F. Jin, and N. He, Digital light processing 3D printing Kevlar composites based on dual curing resin. Additive Manufacturing, 2021. 41: p. 101962.
66. Kuang, X., Z. Zhao, K. Chen, D. Fang, G. Kang, and H.J. Qi, High‐speed 3D printing of high‐performance thermosetting polymers via two‐stage curing. Macromolecular rapid communications, 2018. 39(7): p. 1700809.
67. Cui, Y., J. Yang, D. Lei, and J. Su, 3D printing of a dual-curing resin with cationic curable vegetable oil. Industrial & Engineering Chemistry Research, 2020. 59(25): p. 11381-11388.
68. Bagheri, A. and J. Jin, Photopolymerization in 3D printing. ACS Applied Polymer Materials, 2019. 1(4): p. 593-611.
69. Montheard, J.-P., M. Chatzopoulos, and D. Chappard, 2-hydroxyethyl methacrylate (HEMA): chemical properties and applications in biomedical fields. Journal of Macromolecular Science, Part C: Polymer Reviews, 1992. 32(1): p. 1-34.
70. Musgrave, C.S.A. and F. Fang, Contact lens materials: a materials science perspective. Materials, 2019. 12(2): p. 261.
71. Lim, H.-N., S.-H. Kim, B. Yu, and Y.-K. Lee, Influence of HEMA content on the mechanical and bonding properties of experimental HEMA-added glass ionomer cements. Journal of Applied Oral Science, 2009. 17: p. 340-349.
72. Zare, M., A. Bigham, M. Zare, H. Luo, E. Rezvani Ghomi, and S. Ramakrishna, pHEMA: An Overview for Biomedical Applications. International Journal of Molecular Sciences, 2021. 22(12): p. 6376.
73. Zafar, F. and E. Sharmin, Polyurethane. 2012: BoD–Books on Demand.
74. Pandya, M., D. Deshpande, and D. Hundiwale, Effect of diisocyanate structure on viscoelastic, thermal, mechanical and electrical properties of cast polyurethanes. Journal of applied polymer science, 1986. 32(5): p. 4959-4969.
75. Kapp, R.W., Isocyanates, in Encyclopedia of Toxicology (Third Edition), P. Wexler, Editor. 2014, Academic Press: Oxford. p. 1112-1131.
76. Lee, D.K. and H.B. Tsai, Properties of segmented polyurethanes derived from different diisocyanates. Journal of applied polymer science, 2000. 75(1): p. 167-174.
77. Cheng, Q., Y. Zheng, T. Wang, D. Sun, and R. Lin, Yellow resistant photosensitive resin for digital light processing 3D printing. Journal of Applied Polymer Science, 2020. 137(7): p. 48369.
78. Shameer, P.M. and P.M. Nishath, Exploration and enhancement on fuel stability of biodiesel: A step forward in the track of global commercialization, in Advanced Biofuels. 2019, Elsevier. p. 181-213.
79. Han, Y., F. Wang, H. Wang, X. Jiao, and D. Chen, High-strength boehmite-acrylate composites for 3D printing: reinforced filler-matrix interactions. Composites Science and Technology, 2018. 154: p. 104-109.
80. Kim, J., L. Kim, and C. Kim, Size control of silica nanoparticles and their surface treatment for fabrication of dental nanocomposites. Biomacromolecules, 2007. 8(1): p. 215-222.
81. Rodríguez, H.A., W.M. Kriven, and H. Casanova, Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state. Materials Science and Engineering: C, 2019. 101: p. 274-282.
82. Cepuritis, R., E.J. Garboczi, C.F. Ferraris, S. Jacobsen, and B.E. Sørensen, Measurement of particle size distribution and specific surface area for crushed concrete aggregate fines. Advanced Powder Technology, 2017. 28(3): p. 706-720.
83. Stafford, G., R. Huggett, and B. Causton, Fracture toughness of denture base acrylics. Journal of biomedical materials research, 1980. 14(4): p. 359-371.
84. Ali, I.L., N. Yunus, and M.I. Abu‐Hassan, Hardness, flexural strength, and flexural modulus comparisons of three differently cured denture base systems. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry, 2008. 17(7): p. 545-549.
85. Cevik, P. and A.Z. Yildirim‐Bicer, The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. Journal of Prosthodontics, 2018. 27(8): p. 763-770.
86. Standardization, I.O.f., Plastics and ebonite-Determination of indentation hardness by means of a durometer (Shore hardness). 2003.
87. Choi, J.J.E., C.E. Uy, P. Plaksina, R.S. Ramani, R. Ganjigatti, and J.N. Waddell, Bond strength of denture teeth to heat‐cured, CAD/CAM and 3D printed denture acrylics. Journal of Prosthodontics, 2020. 29(5): p. 415-421.
88. Karabela, M.M. and I.D. Sideridou, Synthesis and study of properties of dental resin composites with different nanosilica particles size. Dental materials, 2011. 27(8): p. 825-835.
89. Wilson, K.S., K. Zhang, and J.M. Antonucci, Systematic variation of interfacial phase reactivity in dental nanocomposites. Biomaterials, 2005. 26(25): p. 5095-5103.
90. Kanie, T., H. Arikawa, K. Fujii, and K. Inoue, Physical and mechanical properties of PMMA resins containing γ‐methacryloxypropyltrimethoxysilane. Journal of oral rehabilitation, 2004. 31(2): p. 166-171.
91. Rodríguez, H.A., L.F. Giraldo, and H. Casanova, Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins. Dental Materials, 2015. 31(7): p. 789-798.
92. Chen, H., S.-Y. Lee, and Y.-M. Lin, Synthesis and formulation of PCL-based urethane acrylates for DLP 3D printers. Polymers, 2020. 12(7): p. 1500.
93. Barszczewska‐Rybarek, I.M., Quantitative determination of degree of conversion in photocured poly (urethane‐dimethacrylate) s by Fourier transform infrared spectroscopy. Journal of applied polymer science, 2012. 123(3): p. 1604-1611.
94. Taormina, G., C. Sciancalepore, M. Messori, and F. Bondioli, 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends. Journal of applied biomaterials & functional materials, 2018. 16(3): p. 151-160.
95. Standardization, I.O.f., Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. 2009.
96. Raszewski, Z., Influence of polymerization method on the cytotoxicity of three different denture base acrylic resins polymerized in different methods. Saudi journal of biological sciences, 2020. 27(10): p. 2612-2616.
電子全文 電子全文(網際網路公開日期:20270119)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊