|
1. Won, E. and Y.K. Kim, Stress, the Autonomic Nervous System, and the Immune-kynurenine Pathway in the Etiology of Depression. Curr Neuropharmacol, 2016. 14(7): p. 665-73. 2. Goldstein, D.S. and I.J. Kopin, Evolution of concepts of stress. Stress, 2007. 10(2): p. 109-20. 3. Rosmond, R. and P. Bjorntorp, Endocrine and metabolic aberrations in men with abdominal obesity in relation to anxio-depressive infirmity. Metabolism, 1998. 47(10): p. 1187-93. 4. McMartin, C., et al., Receipt of 5-Alpha Reductase Inhibitors Before Radical Cystectomy: Do They Render High-Grade Bladder Tumors Less Aggressive? Clin Genitourin Cancer, 2019. 17(6): p. e1122-e1128. 5. McEwen, B.S., Protection and damage from acute and chronic stress: allostasis and allostatic overload and relevance to the pathophysiology of psychiatric disorders. Ann N Y Acad Sci, 2004. 1032: p. 1-7. 6. McEwen, B.S., The neurobiology of stress: from serendipity to clinical relevance. Brain Res, 2000. 886(1-2): p. 172-189. 7. Brown, M.R., et al., Corticotropin-releasing factor: a physiologic regulator of adrenal epinephrine secretion. Brain Res, 1985. 328(2): p. 355-7. 8. Brotman, D.J., S.H. Golden, and I.S. Wittstein, The cardiovascular toll of stress. Lancet, 2007. 370(9592): p. 1089-100. 9. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur Heart J, 1996. 17(3): p. 354-81. 10. Castaldo, R., et al., Acute mental stress assessment via short term HRV analysis in healthy adults: A systematic review with meta-analysis. Biomedical Signal Processing and Control, 2015. 18: p. 370-377. 11. Salahuddin, L., et al., Ultra short term analysis of heart rate variability for monitoring mental stress in mobile settings. Annu Int Conf IEEE Eng Med Biol Soc, 2007. 2007: p. 4656-9. 12. Kirschbaum, C., K.M. Pirke, and D.H. Hellhammer, The 'Trier Social Stress Test'--a tool for investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 1993. 28(1-2): p. 76-81. 13. Coutts, L.V., et al., Deep learning with wearable based heart rate variability for prediction of mental and general health. Journal of Biomedical Informatics, 2020. 112. 14. Wozniak, H., et al., Mental health outcomes of ICU and non-ICU healthcare workers during the COVID-19 outbreak: a cross-sectional study. Annals of Intensive Care, 2021. 11(1): p. 106. 15. Pan, J. and W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans Biomed Eng, 1985. 32(3): p. 230-6. 16. Manikandan, M.S. and K.P. Soman, A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomedical Signal Processing and Control, 2012. 7(2): p. 118-128. 17. Chen, R., et al., Needle EMG of the human diaphragm: power spectral analysis in normal subjects. Muscle Nerve, 1996. 19(3): p. 324-30. 18. Mello, R.G., L.F. Oliveira, and J. Nadal, Digital Butterworth filter for subtracting noise from low magnitude surface electromyogram. Comput Methods Programs Biomed, 2007. 87(1): p. 28-35. 19. Redfern, M.S., R.E. Hughes, and D.B. Chaffin, High-Pass Filtering to Remove Electrocardiographic Interference from Torso Emg Recordings. Clinical Biomechanics, 1993. 8(1): p. 44-48. 20. Ren, X.M., et al., Noise reduction based on ICA decomposition and wavelet transform for the extraction of motor unit action potentials. Journal of Neuroscience Methods, 2006. 158(2): p. 313-322. 21. Hellhammer, D.H., S. Wust, and B.M. Kudielka, Salivary cortisol as a biomarker in stress research. Psychoneuroendocrinology, 2009. 34(2): p. 163-171. 22. Heart Rate Variability. Annals of Internal Medicine, 1993. 118(6): p. 436-447. 23. Pourmohammadi, S. and A. Maleki, Stress detection using ECG and EMG signals: A comprehensive study. Comput Methods Programs Biomed, 2020. 193: p. 105482. 24. Wijsman, J., et al., Trapezius Muscle EMG as Predictor of Mental Stress. Acm Transactions on Embedded Computing Systems, 2013. 12(4). 25. Phinyomark, A., P. Phukpattaranont, and C. Limsakul, Feature reduction and selection for EMG signal classification. Expert Systems with Applications, 2012. 39(8): p. 7420-7431. 26. Li, Q., R.G. Mark, and G.D. Clifford, Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol Meas, 2008. 29(1): p. 15-32. 27. Redmond, S.J., et al., ECG quality measures in telecare monitoring. Annu Int Conf IEEE Eng Med Biol Soc, 2008. 2008: p. 2869-72. 28. Rahman, S., et al., Robustness of electrocardiogram signal quality indices. J R Soc Interface, 2022. 19(189): p. 20220012. 29. Kim, J., J. Park, and J. Park, Development of a statistical model to classify driving stress levels using galvanic skin responses. Human Factors and Ergonomics in Manufacturing & Service Industries, 2020. 30(5): p. 321-328. 30. Pakhomov, S.V.S., et al., Using consumer-wearable technology for remote assessment of physiological response to stress in the naturalistic environment. PLoS One, 2020. 15(3): p. e0229942. 31. Saganowski, S., et al., Review of consumer wearables in emotion, stress, meditation, sleep, and activity detection and analysis. arXiv preprint arXiv:2005.00093, 2020. 32. Ahn, J.W., Y. Ku, and H.C. Kim, A novel wearable EEG and ECG recording system for stress assessment. Sensors, 2019. 19(9): p. 1991. 33. Can, Y.S., B. Arnrich, and C. Ersoy, Stress detection in daily life scenarios using smart phones and wearable sensors: A survey. J Biomed Inform, 2019. 92: p. 103139. 34. Posada-Quintero, H.F. and J.B. Bolkhovsky, Machine Learning models for the Identification of Cognitive Tasks using Autonomic Reactions from Heart Rate Variability and Electrodermal Activity. Behavioral Sciences, 2019. 9(4). 35. Moody, G.B. and R.G. Mark, The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag, 2001. 20(3): p. 45-50. 36. Goldberger, A.L., et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation, 2000. 101(23): p. E215-20. 37. Castaldo, R., et al. To What Extent Can We Shorten HRV Analysis in Wearable Sensing? A Case Study on Mental Stress Detection. 2018. Singapore: Springer Singapore. 38. Smets, E., et al. Comparison of Machine Learning Techniques for Psychophysiological Stress Detection. 2016. Cham: Springer International Publishing. 39. Choi, J., B. Ahmed, and R. Gutierrez-Osuna, Development and Evaluation of an Ambulatory Stress Monitor Based on Wearable Sensors. IEEE Transactions on Information Technology in Biomedicine, 2012. 16(2): p. 279-286. 40. Clifford, G.D., et al., Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol Meas, 2012. 33(9): p. 1419-33. 41. Kužílek, J., et al. Data driven approach to ECG signal quality assessment using multistep SVM classification. in 2011 Computing in Cardiology. 2011. 42. Zhang, Q., L. Fu, and L. Gu, A Cascaded Convolutional Neural Network for Assessing Signal Quality of Dynamic ECG. Comput Math Methods Med, 2019. 2019: p. 7095137. 43. Visnovcova, Z., et al., Complexity and time asymmetry of heart rate variability are altered in acute mental stress. Physiol Meas, 2014. 35(7): p. 1319-34. 44. Schubert, C., et al., Effects of stress on heart rate complexity--a comparison between short-term and chronic stress. Biol Psychol, 2009. 80(3): p. 325-32. 45. Hagberg, C. and M. Hagberg, Surface EMG amplitude and frequency dependence on exerted force for the upper trapezius muscle: a comparison between right and left sides. Eur J Appl Physiol Occup Physiol, 1989. 58(6): p. 641-5. 46. Choi, J., B. Ahmed, and R. Gutierrez-Osuna, Development and evaluation of an ambulatory stress monitor based on wearable sensors. IEEE Trans Inf Technol Biomed, 2012. 16(2): p. 279-86.
|