跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳修廷
研究生(外文):Wu, Hsiu-Ting
論文名稱:KTP於脈衝式光纖雷射之腔外倍頻轉換優化與限制
論文名稱(外文):The optimization and limitation of the second harmonic generation by an external cavity and KTP in a pulsed fiber laser
指導教授:藍宇彬
指導教授(外文):Lan, Yu-Pin
口試委員:周昱薰張博宇
口試委員(外文):Chou, Yuh-ShingChang, Po-Yu
口試日期:2022-001-14
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:68
中文關鍵詞:腔外倍頻非線性晶體KTP光腰灰色蹤跡
外文關鍵詞:extracavityfrequency doublingnonlinear crystalKTPbeam waistgray tracking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以脈衝式摻鐿脈衝式光纖雷射作為基頻光源,雷射操作條件設定在脈衝重複率10kHz,脈衝寬度200ns,作為倍頻轉換的非線性晶體為KTP。透過單程通過單顆與雙顆非線性晶體方式提高輸出之倍頻光功率與轉換效率;在單晶體的架構下,基頻光聚焦至半徑25μm,於10mm長度KTP可獲得13.36%轉換效率;在雙晶體架構下,V型外腔式架構光腰組合(25μm,25μm)獲得15.43%的轉換效率;在Z型外腔式架構中,光腰組合(25μm,17μm)獲得本次實驗最佳的轉換效率17.21%。本研究同時也在單晶體架構下測試輸出之倍頻光的可靠度;在基頻光功率≥7W、光腰半徑41μm時,測試時間2~4小時,觀察到所謂的灰色蹤跡效應,並以模擬驗證灰色蹤跡的閾值。
In this thesis, the optimization of an extracavity frequency doubling has been realized in a Ytterbium-doped pulsed fiber laser. The fiber laser operates at a pulse repetition rate of 10kHz and an output pulse width of 200ns. The nonlinear crystal used for frequency doubling is KTP. The conversion efficiency and power studied by single pass single crystal and dual crystal. In the single crystal extracavity scheme, the frequency doubling conversion efficiency of 13.36% is obtained, when the fundamental beam waist is 25μm and crystal length is 10mm. In the dual crystal extracavity scheme, V-shape architecture achieve conversion efficiency 15.43% at beam waist (25μm, 25μm), Z-shape architecture maximum conversion efficiency of 17.21% is achieved at beam waist(25μm, 17μm).
The gray tracking was observed after 2~4 hours, when the frequency doubling transformation in the single crystal extracavity at the fundamental light power of larger than 7watts and the beam size of 41μm. The results of gray tracking occurrence were approved by simulation.
誌謝 i
摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vii
表目錄 xii
第一章 序言 1
1-1研究動機 1
1-2倍頻轉換簡介 4
1-3先前實驗室成果 5
1-4 研究架構 8
第二章 非線性光學倍頻原理 9
2-1 非線性概要 9
2-2 二次諧波轉換 10
2-3相位匹配 12
2-4 頻率轉換效率原理 14
2-5 單程通過單晶體之腔外倍頻 18
2-5-1 單程通過單晶體之腔外倍頻架構 18
2-5-1-1 單程通過非線性晶體之可靠度測試 19
2-5-2 雙程通過單晶體式腔外倍頻 20
第三章 實驗架構及流程 21
3-1 摻鐿光纖雷射 21
3-1-1 摻鐿光纖雷射的偏振和波形之量測 23
3-2 倍頻晶體KTP介紹 25
3-3 實驗作法與流程 27
3-4 雙晶體架構設計原理 31
3-5 實驗架構 34
3-5-1 單程通過雙晶體之V型外腔式架構 34
3-5-1-1 V型外腔式架構之晶體擺放順序的探討 35
3-5-2 單程通過雙晶體之Z型外腔式架構 36
第四章 結果分析與討論 38
4-1 單晶體之實驗結果 38
4-1-1 單程通過單晶體之倍頻實驗結果 38
4-1-1-1 模擬與實驗結果討論 40
4-1-1-2 單程通過單晶體之可靠度結果分析 42
4-1-1-3 灰色蹤跡 44
4-1-2 雙程通過單晶體之倍頻實驗結果 47
4-1-3 單晶體之實驗結果總結 48
4-2 V型外腔式架構之晶體擺放順序實驗結果 49
4-2-1 不同晶體長度組合之倍頻實驗結果 49
4-3單程通過雙晶體之外腔式架構實驗結果 52
4-3-1單程通過雙晶體之V型外腔式架構 52
4-3-2單程通過雙晶體之Z型外腔式架構 56
4-3-3 外腔式不同架構之實驗結果比較 60
第五章 結論與未來展望 63
5-1結論 63
5-2未來工作 64
參考文獻 65
[1] S.P.F.C Jaspers, J.HDautzenbergb, “Material behaviour in metal cutting: strains, strain rates and temperatures in chip formation,” Journal of Materials Processing Technology Volume 121, Issue 1, Pages 123-135,14 February 2002.
[2] Martin Pollák, Jozef Dobránsky, “Structural Design and Material Cutting Using a Laser End Effector on a Robot Arm,” TEM Journal. Volume 9, Issue 4, Pages 1455‐1459, ISSN 2217‐8309, November 2020.
[3] https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=339
[4] https://www.laservalley.org.tw/upload/news_rpt/20201218-01.pdf
[5] D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” Optical Society of America B Vol. 27, Issue 11, pp. B63-B92 (2010).
[6] Shiwei Shu, Zhe Li, and Yang Yang Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Optics Express Vol. 21, Issue 21, pp. 25307-25315 (2013).
[7] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature, vol.187, pp.493-494, 1960.
[8] Amnon Yariv, “Optical Electronics”, vol.8, pp.271, 1991.
[9] Yu-Jen Huang, Cheng-Yu Tang, Chun-Yu Cho, Kuan-Wei Su, and Yung-Fu Chen, “Comparative Study Between Extracavity and Intracavity Frequency-Doubled Laser at 532 nm: Application for the Deep Ultraviolet Generation at 266 nm,” IEEE Journal of Selected Topics in Quantum Electronics, vol.21, 2015.
[10] W.Koechner, Solid-State Laser Engineering, 6th ed, chap.10, Springer Berlin, 2005.
[11] V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals, 3rd ed, chap.2, Springer Berlin, 1991.
[12] Shai Emanueli and Ady Arie, “Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4,” Applied Optics, vol. 42, Issue33, pp. 6661-6665(2003).
[13] Jianquan Yao, Yuyue Wang, “Nonlinear Optics and Solid-State Lasers”, Springer series in optical sciences, chap.1, 2012.
[14] M. M. Fejer, G. A. Magel, D. H. Jundt, R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation: Tuning and Tolerances,” IEEE J. Quantum Electron, vol. 28, pp. 2631-2654, 1992.
[15] Charles J. Koester and Elias Snitzer, “Amplification in a Fiber Laser,” APPLIED OPTICS, vol.3, 1964.
[16] E. Snitzer, H. Po, F. Hakimi, R. Tumminelli, and B. C. McCollum, “Double-clad, offset core Nd fiber laser,” in Optical Fiber Sensors, 1988 OSA .
[17] R¨udiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electronics, vol.33, pp.1049-1056, 1997.
[18] Loan Damian,“Malus’ Law for a Real Polarizer,” Mathematics-Physics, vol.49(63),2,p.107, 2004.
[19] V. Grachev, M. Meyer1, J. Jorgensen1, A. W. Hunt, and G. Malovichko, “Site selective substitution Pt for Ti in KTiOPO4 :Ga crystals revealed by electron paramagnetic resonance” , APPLIED PHYSICS 116, 043505, 2014.
[20] A. Mamrashev, N. Nikolaev, V. Antsygin, Y. Andreev, G. Lanskii, A. Meshalkin, “Optical properties of KTP crystals and their potential for terahertz generation,” Crystals, vol.8, pp.310, 2018.
[21] Koechner, Walter, “Solid-state Laser Engineering” ,vol.10, pp.612, 2010.
[22] Walter Koechner, “Laser Electronics”, chap 5,1976.
[23] Eugene Hecht, Alfred Zajaci, “ Optics”, 2th ed, chap 5,1987.
[24] J. P. Landry, “Waist Radius Measurement of Gaussian Beams,” OI-RD Microscopy, pp.481-490.
[25] B. Boulanger; I. Rousseau; J.P. Feve, “Optical studies of laser-induced gray-tracking in KTP”, IEEE Journal of Quantum Electronics, Volume: 35, Issue: 3 , 1999.
[26] Larry E. Halliburton, Michael P. Scripsick, "Mechanisms and point defects responsible for the formation of gray tracks in KTP," Proc. SPIE 2379, Solid State Lasers and Nonlinear Crystals, 1995.
[27] V.V.Atuchin, N.Yu.Maklakova, L.D.Pokrovsky, N.Semenenko, “Restoration of KTiOPO4 surface by annealing”, Optical Materials, volume 23, issues 1–2, Pages 363-367, 2003.
[28] M. P. Scripsick, D. N. Lolacono, J. Rottenberg, L. E. Halliburton, and F. K. Hopkins, “Grey Track Resistant Flux Grown KTP,” Advanced Solid State Lasers, paper SC18, 1995.
[29] J. P. Feve, B. Boulanger, and G. Marnier,”Repetition rate dependence of gray-tracking in KTiOPO4 during second harmonic generation at 532 nm”, Appl. Phys. Lett. 70, 277 (1997).
[30] Shinji Motokoshi, Takahisa Jitsuno, Masahiro Nakatsuka, Yasukazu Izawa, “Gray-tracking susceptibility in KTiOPO4 crystals”, Proceedings of the SPIE, Volume 3889, p. 644-650 (2000).
[31] https://4lasers.com/en/components/crystals/nonlinear-crystals/ktp-crystals
[32] Shuzhen Cui, Lei Zhang, Huawei Jiang, and Yan Feng, “33 W continuous-wave single-frequency green laser by frequency doubling of a single-mode YDFA”, Chinese Optics Letters, vol. 15, Issue 4, pp.041-042, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top