跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 07:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇彥承
研究生(外文):Su, Yan-Cheng
論文名稱:可拉伸式孔洞型金屬光柵增強二硫化鉬光致發光
論文名稱(外文):Stretchable Metal Grating with Holes Enhancing Photoluminescence of MoS2
指導教授:李柏璁李柏璁引用關係
指導教授(外文):Lee, Po-Tung
口試委員:張書維張祐嘉黃耀緯
口試委員(外文):Chang, Shu-WeiChang, You-ChiaHuang, Yao-Wei
口試日期:2022-06-02
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:64
中文關鍵詞:彈性基板表面電漿金屬光柵二維材料二硫化鉬光致發光
外文關鍵詞:flexible substratesurface plasmonmetal grating2D materialsMoS2photoluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們以金屬光柵作為基礎結構,激發其表面電漿極化子(surface plasmon polariton, SPP)並提升特定偏振方向的電場強度來強化單層二硫化鉬(molybdenum disulfide, "MoS2" )的光致發光(Photoluminescence, PL),在量測結果中可以得到最大4.2倍的增強。接著,我們提出孔洞型金屬光柵作為進階結構,形成額外的侷限性表面電漿共振(localized surface plasmon resonance, LSPR),其優勢為能夠善用另一個偏振方向的電場,以及增加電場的分布面積,在量測結果中可以得到最大9.3倍的增強。
我們將結構的共振波長全部設計在二硫化鉬的激子(exciton)模態,因此激發光源不會被限制在單一波長,而能夠使用多種雷射來激發正是我們元件的特色。另外,我們將結構包覆於聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)這種彈性材料中,而我們的元件在拉伸測試中PL訊號的波峰位置和強度都能保持不變,未來能應用在需要高穩定度的可饒式元件中。
In this thesis, we use the metal grating as the basic structure, which can form the surface plasmon polariton (SPP) and then increase the intensity of a polarized E-field, to enhance the photoluminescence (PL) intensity of single-layer MoS2 about 4.2 times. Then, we propose the metal grating with holes, which can form additional Localized Surface Plasmon Resonance (LSPR) to utilize another polarized E-field and increase the area of all E-field, to enhance the PL intensity about 9.3 times.
The resonant wavelength of our structures is only designed for the exciton mode of MoS2, so the excitation light source would not be limited at a single wavelength. In other words, a feature of our device is that various kinds of laser can excite our structures. In addition, we encapsulate our structure in Polydimethylsiloxane (PDMS), a flexible material, and even under an uniaxial tensile strain, they still provide a stable PL enhancement. We look forward to applying our research to future applications where high stability is required in the field of flexible device.
中文摘要 i
Abstract ii
致謝 iii
目錄 v
圖片清單 viii
表格清單 xi
第一章 序論 1
1.1 背景及簡介 1
1.1.1 二維材料及二硫化鉬("MoS2" ) 1
1.1.2 表面電漿子 5
1.1.3 彈性基板 7
1.2 研究動機與論文架構概述 9
1.2.1 增強二硫化鉬PL的動機及方法 9
1.2.2 表面電漿增強機制以及結合彈性基板 11
1.2.3 元件結構簡介及論文架構 14
第二章 模擬、製程和量測 15
2.1 模擬方法 15
2.1.1 有限元素分析法 15
2.1.2 電磁波模組 16
2.2 製程步驟 19
2.2.1電子束微影 21
2.2.2金屬熱蒸鍍與掀離(lift off) 23
2.2.3 PDMS基板結合 24
2.2.4二維材料轉印 25
2.3量測系統 26
2.3.1 穿透頻譜量測系統 26
2.3.2 拉曼與光致發光量測系統 27
第三章 結構設計與光學特性分析 29
3.1 金屬光柵(metal grating, MG)設計 29
3.1.1 初估週期及調變金屬光柵厚度 31
3.1.2 調變金屬光柵週期與調變金屬寬度 35
3.2 金屬鏤空光柵(metal grating with holes, MGH)設計 37
3.2.1 調變孔洞週期與x方向偏振電場 37
3.2.2 調變孔洞週期與y方向偏振電場 41
3.3 小結 44
第四章 實驗與結果分析 45
4.1 二硫化鉬特性 45
4.2 以金屬光柵結構增強MoS2光致發光 48
4.2.1 確認金屬光柵的共振波長趨勢 48
4.2.2 PL量測以及調變光柵週期 51
4.2.3 更換PL激發光源 52
4.3 以金屬鏤空光柵結構增強MoS2光致發光 54
4.3.1 調變孔洞週期 54
4.3.2 增加孔洞前後之MoS2光致發光強化幅度討論 55
4.4 拉伸穩定性 57
第五章 結論與未來展望 60
5.1 結論 60
5.2未來展望 60
參考文獻 61
[1] Xia F., Wang H., Xiao D. et al, “Two-dimensional material nanophotonics,” Nature Photon 8, 899–907 (2014).
[2] Pablo Solís-Fernández, Mark Bissett, and Hiroki Ago, “Synthesis, structure and applications of graphene-based 2D heterostructures,” Chem. Soc. Rev 46, 4572 (2017).
[3] Kin Fai Mak, Changgu Lee, James Hone, Jie Shan, and Tony F. Heinz, “Atomically Thin MoS2: A New Direct-Gap Semiconductor,” PRL 105, 136805 (2010).
[4] Yuan Liu, Xidong Duan, Yu Huang and Xiangfeng Duan, “Two-dimensional transistors beyond graphene and TMDCs,” Chem. Soc. Rev. 47, 6388 (2018).
[5] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures,” Nature 499, 419–425 (2013).
[6] Chendong Zhang, Amber Johnson, Chang-Lung Hsu, Lain-Jong Li, and Chih-Kang Shih, “Direct Imaging of Band Profile in Single Layer MoS2 on Graphite: Quasiparticle Energy Gap, Metallic Edge States, and Edge Band Bending,” Nano Lett. 14, 2443−2447 (2014).
[7] Alexey Chernikov, Timothy C. Berkelbach, Heather M. Hill, et al, “Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2,” PRL 113, 076802 (2014).
[8] Chong-Rong Wu, Tung-Wei Chu, Kuan-Chao Chen, and Shih-Yen Lin, “Preparation of Large-Area Vertical 2D Crystal Hetero-Structures Through the Sulfurization of Transition Metal Films for Device Fabrication,” J. Vis. Exp. 129, e56484 (2017).
[9] Jaeho J., Sung Kyu Jang, Su Min Jeon, Gwangwe Yoo, Yun Hee Jang, Jin-Hong Park and Sungjoo Lee,"Layer-controlled CVD growth of large-area two-dimensional MoS2 films," Nanoscale 7, 1688–1695 (2015).
[10] William L. Barnes, Alain Dereux & Thomas W. Ebbesen, “Surface plasmon
subwavelength optics,” Nature 424, 824–830 (2003).
[11] Katherine A.Willets and Richard P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopyand Sensing,” Annu. Rev. Phys. Chem. 58, 267–97 (2007).
[12] V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, “Plasmonic Surface Lattice Resonances: A Review of Properties and Applications,” Chem. Rev. 118, 5912−5951 (2018).
[13] Chiao-Yun Chang, Hsiang-Ting Lin, Ming-Sheng Lai et al, “Flexible Localized Surface Plasmon Resonance Sensor with Metal–Insulator–Metal Nanodisks on PDMS Substrate,” Sci. Rep. 8, 11812 (2018).
[14] Tran Quang Trung and Nae-Eung Lee, “Flexible and Stretchable Physical Sensor Integrated Platforms for Wearable Human-Activity Monitoring and Personal Healthcare,” Adv. Mater. 28, 4338–4372 (2016).
[15] Ankun Yang, Alexander J. Hryn, Marc R. Bourgeois, Won-Kyu Lee, Jingtian Hu, George C. Schatz, and Teri W. Odom, “Programmable and reversible plasmon mode engineering,” Proc. Natl. Acad. Sci. 113, 14201 (2016).
[16] Hiram J. Conley, Bin Wang, Jed I. Ziegler et al, “Bandgap Engineering of Strained Monolayer and Bilayer MoS2,” Nano Lett. 13, 3626−3630 (2013).
[17] Hau-Vei Han, Ang-Yu Lu, Li-Syuan Lu et al, “Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment,” ACS Nano 10, 1454−1461 (2016).
[18] Haiyan Nan, Zilu Wang, Wenhui Wang et al, “Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding,” Acs Nano 8(6), 5738–5745 (2014).
[19] Jason S. Ross, Philip Klement, Aaron M. Jones et al, “Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions,” Nat. Nanotechnol. 9, 268–272 (2014).
[20] Taylor K Fryett, Kyle L Seyler, Jiajiu Zheng et al, “Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2,” 2D Mater. 4, 015031 (2017).
[21] Serkan Butun, Sefaattin Tongay, and Koray Aydin, “Enhanced Light Emission from Large-Area Monolayer MoS2 Using Plasmonic Nanodisc Arrays,” Nano Lett. 15, 2700−2704 (2015).
[22] Jiu Li, Qingqing Ji, Saisai Chu, Yanfeng Zhang et al, “Tuning the photo-response in monolayer MoS2 by plasmonic nano-antenna,” Scientific Reports 6, 23626 (2016).
[23] Wen-Bo Shi, Lei Zhang, Di Wang et al, “Hybrid coupling enhances photoluminescence of monolayer MoS2 on plasmonic nanostructures,” Opt. Lett. 43(17), 4128-4131 (2018).
[24] Jeong-Min HAN, Jin-Woo HAN, Ji-Yun CHUN et al, “Novel Encapsulation Method for Flexible Organic Light-Emitting Diodes using Poly(dimethylsiloxane),” Jpn. J. Appl. Phys. 47, 8986 (2008).
[25] Serkan Butun, Edgar Palacios, Jeffrey D. Cain et al, “Quantifying Plasmon-Enhanced Light Absorption in Monolayer WS2 Films,” ACS Appl. Mater. Interfaces 9, 15044−15051 (2017).
[26] J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845 (1999).
[27] Jing Zhou and L. Jay Guo, “Transition from a spectrum filter to a polarizer in a metallic nano-slit array,” Sci Rep 4, 3614 (2014).
[28] Hans Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B 50, 4795 (1994).
[29] Zhijun Sun and Danyan Zeng, “Modeling optical transmission spectra of periodic
narrow slit arrays in thick metal films and their correlation with those of individual slits,” J Mod Opt 55(10), 1639-1647 (2008).
[30] Yen-Ju Chiang, Tsan-Wen Lu, Pin-Ruei Huang, Shih-Yen Lin, and Po-Tsung Lee, “MoS2 with Stable Photoluminescence Enhancement under Stretching via Plasmonic Surface Lattice Resonance,” Nanomaterials 11(7), 1698 (2021).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊