跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 08:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳力維
研究生(外文):Chen, Li-Wei
論文名稱:以化學溶液法成長可撓式透明氧化鋅/摻鋁氧化鋅單晶於白雲母基板之研究
論文名稱(外文):The Study of Flexible Transparent Zinc Oxide/Al-Doped Zinc Oxide Single Crystal on Muscovite via Chemical Solution Method
指導教授:朱英豪
指導教授(外文):Chu, Ying-Hao
口試委員:朱英豪張立張宏宜
口試委員(外文):Chu, Ying-HaoChang, LiChang, Hong-Yi
口試日期:2021-08-18
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:62
中文關鍵詞:氧化鋅摻鋁氧化鋅化學合成法高載子遷移率可控之載子濃度可撓性
外文關鍵詞:Zinc OxideAl doped Zinc OxideChemical solution methodHigh mobilityTunable bulk concentrationFlexible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
氧化鋅(Zinc Oxide, ZnO)為一現行熱門的研究材料,在諸多領域應用上皆能看到他的蹤跡;其具有相對較寬的能隙(3.37eV)、較高的激子束縛能(60meV)並同時具有良好的熱穩定性以及化學穩定性,此外也具有低毒性與價格低廉的優點,因此在工業上也具有極高的潛力應用於藍光LED與太陽能板之中。傳統製程上,生產單晶主要以柴式長晶法(Czochralski method, CZ法)與浮融長晶法(Floating Zone method, FZ法)成長出晶棒後,再透過薄化的過程得到單晶晶圓,本實驗選擇以兩種化學合成法(傳統水熱法以及微波輔助化學浴沉積法)成長氧化鋅單晶於白雲母基板上,相對於傳統的top-down製程,此兩種bottom-up方式的成長方法能直接跳過薄化的製程以避免在這之中產生的殘留應力以及表面破壞等問題,並且在製程上也大幅減少能源的成本,而同時具有較高的成長速率與大面積成長的優點。
本實驗以射頻磁控濺鍍法於白雲母基板上成長氧化鋅晶種層,並且成功且穩定的以化學合成法成長得到載子遷移率超過100cm^2/Vs的氧化鋅單晶,此外,為了透過控制樣品中的載子濃度以得到更好的電性表現,我們也透過成長不同鋁摻雜比例的晶種層來調控整體氧化鋅單晶之中的鋁含量,並逐步分析之中的光學性質以及電性質,最後,透過一系列的彎曲測試,可以確認樣品的整體結構具有優異的抗疲勞能力與可靠的耐久度。
Zinc oxide (ZnO) is a currently popular research material, and its traces can be seen in many applications; it has a relatively wide energy gap (3.37eV)、 high exciton binding energy ( 60meV) and good thermal and chemical stability at the same time. In addition, it also has some advantages such as low toxicity and low price, so it has extremely high potential in industry to be used in blue LEDs and solar panels. In the traditional process, the production of single crystals mainly uses the Czochralski method (CZ method) and the floating zone method (FZ method) to grow the ingots, and then the single crystal wafers are obtained through the thinning process. This experiment chose two chemical solition methods (traditional hydrothermal method and microwave-assisted chemical bath deposition method) to grow Zinc oxide single crystals on muscovite substrates. Compared with the traditional top-down process, these two kinds of bottom- up methods can avoid residual stress and surface damage by skipping the thinning process, and greatly reduce the energy cost in the process, and it also has the advantages of higher growth rate and large growth scale at the same time.
In this experiment, zinc oxide seed layer was grown on muscovite substrate by the RF magnetron sputtering method, and it was successfully and stably grown by chemical solution method to obtain a zinc oxide single crystal with carrier mobility exceeding 100cm^2/Vs. In addition, to get better electric property performances, we also adjusted the aluminum content in the overall zinc oxide single crystal by growing seed layers with different aluminum doping ratios, and gradually analyzed the optical and electrical properties in the process. Finally, through a series of bending tests, it can be confirmed that the overall structure of the sample has excellent fatigue resistance.
摘要 i
Abstractii
誌謝iii
目錄iv
圖目錄 vi
第 1 章、 緒論. 1
第 2 章、 文獻回顧. 3
2.1 透明導電氧化物(Transparent Conducting Oxide, TCO) 3
2.2 氧化鋅(Zinc Oxide) .3
2.2.1 氧化鋅的基本結構與性質.3
2.2.2 氧化鋅於科技領域之應用.4
2.2.3 鋁摻雜氧化鋅.4
2.3 雲母(Mica)5
2.3.1 白雲母(Muscovite).5
2.4 射頻磁控濺鍍 (RF Magnetron Sputtering).6
2.5 水熱法(Hydrothermal Method)7
2.6 微波輔助化學浴沉積法(Microwave Assisted Chemical bath Deposition,
MWCBD).8
第 3 章、 實驗方法. 9
3.1 實驗流程.9
3.1.1 白雲母基板製備.9
3.1.2 以射頻磁控濺鍍法成長種子層.10
3.1.3 化學溶液法 (Chemical Solution Method) 11
1. 水熱法 11
2. 微波輔助化學浴沉積法12
3.2 分析儀器14
3.2.1 高解析 X 光繞射儀 (High-Resolution X-ray Diffraction, HRXRD) .14
3.2.2 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM).15
3.2.3 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 16
3.2.4 原子力顯微鏡(Atomic Force Microscopy, AFM)17
3.2.5 紫外光-可見光分光光譜儀 (Ultraviolet-Visible Spectrophotometer).18
3.2.6 光致發光光譜 (Photoluminescence, PL)19
3.2.7 二次離子質譜儀 (Secondary Ion Mass Spectroscopy, SIMS)20
3.2.8 霍爾量測系統 (Hall Measurement)21
3.2.9 撓曲電性量測儀.23
第 4 章、 結果與討論. 24
4.1 以射頻磁控濺鍍法成長氧化鋅/摻鋁氧化鋅種子層於白雲母基板上24
4.2 以水熱法於氧化鋅種子層成長氧化鋅單晶.26
4.2.1 結構分析.27
4.2.2 光學分析.29
4.2.3 電性分析.31
4.3 以微波輔助化學浴沉積法於氧化鋅種子層成長氧化鋅單晶.33
4.3.1 結構分析.34
4.3.2 光學分析.35
4.3.3 電性分析.37
4.4 以摻鋁種子層成長氧化鋅單晶.38
4.4.1 結構分析.39
4.4.2 光學分析.41
4.4.3 電性分析.43
4.5 撓曲電性分析.46
4.5.1 ZnO/Muscovite 在水熱法 3M KOH 強鹼環境下樣品之彎曲測試47
4.5.2 AZO/Muscovite 在微波輔助化學浴沉積法 0.5M Zn(NO)3中性環境下之
0.39wt%鋁摻雜比例樣品之彎曲測試.48
第 5 章、 結論. 50
參考文獻. 51
[1] F. Streintz, "Annalen der Physik", Berlin 314, 854 (1902)
[2] K. Bädeker, "Annalen der Physik", Berlin 327, 749 (1907)
[3] H. Sowa, H. Ahsbahs, "High-pressure X-ray investigation of ZnO single crystals using diamond anvils with an improved shape", Journal of Applied Crystallography, 39, 169-175 (2006)
[4] D. Kumar, S. K. Jat, P. K. Khanna, N. Vijayan, and S. Banerjee, "Synthesis, Characterization, and Studies of PVA/Co-Doped ZnO Nanocomposite Films", International Journal of Green Nanotechnology, 4:3, 408-416 (2012)
[5] K. Liu, M. Sakurai, M. Aono, "ZnO-Based Ultraviolet Photodetectors", Sensors, 10(9), 8604-8634 (2010)
[6] E. M. C. Fortunato, P. M. C. Barquinha, A. C. M. B. G. Pimentel, A. M. F. Gonçalves, A. J. S. Marques, L. M. N. Pereira, and R. F. P. Martins, "Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature", Advanced Materials, Volume15-Issue7, 590-594 (2005)
[7] P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr., "Transparent ZnO thin-film transistor fabricated by rf magneton sputtering", Applied Physical Letters, 82, 1117 (2003)
[8] S. H. Ko, D. Lee, H. W. Kang, K. H. Nam, J. Y. Yeo, S. J. Hong, C. P. Grigoropoulos, and H. J. Sung, "Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell", Nano Letters, 666-671 (2011)
[9] J. H. Lim, C. k. Kang, K. K. Kim, I. K. Park, D. K. Hwang, and S. J. Park, "UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering", Advanced Materials, Volume18-Issue20, 2720-2724 (2006)
[10] A. F. Kohan, G. Ceder, D, Morgan, and C. G. Van der Walle, "First-principles study of native point defects in ZnO", Physical Review B, Volume61-Issue22, (2000)
[11] A. Janotti, and C. G. Van der Walle, "Oxygen vacancies in ZnO", Applied Physics Letters, Volume87-Issue12 (2005)
[12] M. C. Jun, S. U. Park, and J. H. Koh, "Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films", Nanoscale Research Letters, 639 (2012)
[13] A. C. Tuan, J. D. Bryan, A. B. Pakhomov, V. Shutthanandan, S. Thevuthasan, D. E. McCready, D. Gaspar, M. H. Engelhard, J. W. Rogers, Jr., K. Krishnan, D. R. Gamelin, and S. A. Chambers, "Epitaxial growth and properties of cobalt-doped ZnO on a-Al2O3 single-crystal substrates", Physical Review B, 70-054424 (2004)
[14] M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X.D. Bai, C. Sun, R. F. Huang, and L. s. Wen, "X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films", Applied Surface Science, Volume158, Issues1-2, 134-140 (2000)
[15] Y. S. Kim, and W. P. Tai, "Electrical and optical properties of Al-doped ZnO
thin films by sol–gel process", Applied Surface Science, 253, 4911–4916, (2007) [16] V. A. Drits, B. B. Zviagina, D. K. McCarty, and A. L. Salyn, " Factors responsible for crystal-chemical variations in the solid solutions from illite to aluminoceladonite and from glauconite to celadonite "American Mineralogist, 95 (2-3), 348-361 (2010)
[17] G. Zhang, Z. Wei, and R. E. Ferrell, "Elastic modulus and hardness of muscovite and rectorite determined by nanoindentation", Applied Clay Science, Volume43-Issue2, 271-281 (2009)
[18] K. Autumn, C. Majidi, R. E. Groff, A. Dittmore, and R. Fearing, "Effective elastic modulus of isolated gecko setal arrays", The Journal of Experimental Biology, 209, 3558-3568 (2006)
[19] M. Zeuner, H. Neumann, J. Zalman, and H. Biederman, "Sputter process diagnostics by negative ions", Journal of Applied Physics, 83, 5083 (1998)
[20] Klaus Ellmer, "Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties", Journal of Physics D: Applied Physics, 33 R17 (200)
[21] F. Demoisson, R. Piolet, and F. Bernard, "Hydrothermal Synthesis of ZnO Crystals from Zn(OH)2 Metastable Phases at Room to Supercritical Conditions", Crystal Growth and Design, 5388-5396 (2014)
[22] Y. Li, C. Sheng, and Y. L. Zou, "Growth mechanism and characterization of ZnO nano-tubes synthesized using the hydrothermal-etching method", Chemical Papers, 63, 698 (2009)
[23] B. Lin, and Z. Fu "Green luminescent center in undoped zinc oxide films deposited on silicon substrates", Applied Physics Letters, Vol79, NO.7 (2001)
[24] D. C. Lok, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, "Evidence for Native-Defect Donors in n-Type ZnO", Physical Review Letters, 95, 225502 (2005)
[25] S. K. Kim, S. A. Kim, and C. H. Lee, "The Structure and Behaviors of K-doped ZnO/Al2O3(0001) films", Applied Physical Letters, 85, 419 (2004)
[26] M. Yen, Y. Bitla, and Y. H. Chu, cvan der Waals heteroepitaxy on muscovite", Materials Chemistry and Physics, 234, 185-195 (2019)
[27] Y, Qin, R. Yang, and Z. L. Wang, "Growth of Horizontal ZnO Nanowire Arrays on Any Substrate", Physical Chemistry Letters C, 112, 18734-18736 (2008)
[28] J. Zhang, and W. Que, "Preparation and characterization of sol–gel Al-doped ZnO thin films and ZnO nanowire arrays grown on Al-doped ZnO seed layer by hydrothermal method", Solar Energy Materials & Cells, 94, 2181-2186 (2010)
[29] S. Rao, T. Tang, D. Zhang, W. F. Liu, L. Chen, Z. Hao, Q. Xiao, and J. F. Wen, "Leaching of low grade zinc oxide ores in NH4Cl–NH3 solutions with nitrilotriacetic acid as complexing agents", Hydrometallurgy, 158, 101-106 (2015)
[30] J. Y. Zhu, J. X. Zhang, H. F. Zhou, W. Q. Qin, L. Y. Chai, and Y. H. Hu, "Microwave-assisted synthesis and characterization of ZnO-nanorod arrays", Transactions of Nonferrous Metals Society of China, 19, 1578-1582 (2009)
[31] M, G. Ma, Y. J. Zhu, G. F. Cheng, and Y. H. Huang, "Microwave synthesis and characterization of ZnO with various morphologies", Materials Letters, 62, 507-510 (2008)
[32] Y. Chen, C. Li, X. Xu, Y. He, I. Murtaza, D. Zhang, C. Yao, Y. Wang, and H. Meng, "Thermal and Optical Modulation of the Carrier Mobility in OTFTs Based on an Azo-anthracene Liquid Crystal Organic Semiconductor", Applied Materials and Interfaces, 7305-7314 (2017)
[33] Z. Zhan, J. Zhang, Q. Zheng, D. Pan, J. Huang, F. Huang, and Z. Lin, "Strategy for Preparing Al-Doped ZnO Thin Film with High Mobility and High Stability", Crystal Growth and Design, 21-25 (2011)
[34] N. Kumar, A. H. Chowdhury, B. Bahrami, M. R. Khan, Q. Qiao, and M. Kumar "Origin of enhanced carrier mobility and electrical conductivity in seed-layer assisted sputtered grown Al doped ZnO thin films", Thin Solid Films, Volume 700, 30 (2020)
[35] F. Challali, D. Mendil, T. Tuam, T. Chauveau, V. Bockelee, A. G. Sanchez, A. Chelouche, and M. P. Besland, "Effect of RF sputtering power and vacuum annealing on the properties of AZO thin films prepared from ceramic target in confocal configuration", Materials Science in Semiconductor Processing, Volume 118 (2020)
[36] D. V. Hoang, A. T. T. Pham, T. H. Nguyen, T. B. Phan, and V. C. Tran, "Comparing Thermal Durability and Effects of Annealing Temperature on Characteristics of Hydrogen-Doped ZnO, AZO, and GZO Thin Films", Journal of Nanomaterials, Volume2021 (2021)
[37] E. B. Yean, T. Y. Lee, S. T. Kim, and S. C. Lim, "Electro-Optical Properties of AZO Thin Films with Deposition & Heat treatment Conditions", Korean Journal of Materials Research, Volume 30 Issue 10, 558-565 (2020)
[38] Y. Li, M. Wu, Y. Sun, and S. Yu, "High-performance flexible transparent conductive thin films on PET substrates with a CuM/AZO structure", Journal of Materials Science: Materials in Electronics, 30, 13271-13279 (2019)
[39] M. L. Lin, J. M. Huang, C. S. Ku, C. M. Lin, H. Y. Lee, and J. Y. Juang, "High mobility transparent conductive Al-doped ZnO thin films by atomic layer deposition", Journal of Alloys and Compounds, Volume 727, 565-571 (2017)
[40] M. Naderi, M. Z. Shoushtari, I. Kazeminezhad, M. Ahmadi, and F. A. Roghabadi. "Hydrothermal synthesized AZO Nanorods layer as a high potential buffer layer for inverted polymer solar cell", Ceramics International, Volume 44, Issue 13 (2018)
[41] P. Khamkhom, M. Horprathum, S. Pokai, P. Eiamchai, S. Tuscharoen, V. Pattantsetakul, S. Limwichean, N. Nuntawong, P. Limnonthakul, and J. Kaewkhao, "Preparation of vertically aligned ZnO nanorods on AZO thin film by hydrothermal method", Materials Today, proceeding 4 (2017)
[42] S. Shi, P. Wang, J. Cui, and Z. Sun, "Microstructure and Doping/Temperature-Dependent Photoluminescence of ZnO Nanospears Array Prepared by Hydrothermal Method", Nanoscale Research Letters, 13 (2018)
[43] Y. Pepe, M. A. Yildirim, A. Karatay, A. Ates, H. Unver, and A. Elmali, ""The effect of doping and annealing on the nonlinear absorption characteristics in hydrothermally grown Al doped ZnO thin films, Optical Materials, Volume 98 (2019)
[44] W. Wang, T. Ai, R. Jing, Y. Fei, and X. Feng, "Photoelectric and Electrochemical Performance of Al-Doped ZnO Thin Films Hydrothermally Grown on Graphene-Coated Polyethylene Terephthalate Bilayer Flexible Substrates", The Journal of Physical Chemical C, 121, 50, 28148-28157 (2017)
[45] S. Boubenia, A. S. Dahiya, G. Poulin-Vittrant, F. Morini, K. NaDaud, and D. Alquier, "A facile hydrothermal approach for the density tunable growth of ZnO nanowires and their electrical characterizations", Scientific Reports, volume 7 (2017)
[46] Y. Fan, W. Zheng S. Zhu, L. Cheng, H. Qi, L. Li, and F. Huang, " Extraction of carrier concentration and mobility of ZnO by mid-infrared reflectance spectroscopy ", Journal of Luminescence, Volume 239 (2021)
[47] D. B. Zhang, H. Z. Li, B. P. Zhang, D. D. Liang, and M. Xia, " Hybrid-structured ZnO thermoelectric materials with high carrier mobility and reduced thermal conductivity ", Royal Society of Chemistry, 10855-10864 (2017)
[48] T. Li, M. Wang, X. Liu, M. Jin, and F. Huang, " Hydrogen Impurities in ZnO: Shallow Donors in ZnO Semiconductors and Active Sites for Hydrogenation of Carbon Species ", The Journal of Physical Chemical Letters, 2402-2407 (2020)
[49] M. Suscavage, M. Harris, D. Bliss, P. Yip, S. Q. Wang, D. Schwall, L. Bouthillette, J. Bailey, M. Callahan, D. C. Look, D. C. Reynolds, R. L. Jones, and C. W. Litton, " High Quality Hydrothermal ZnO Crystals ", Cambridge University Press 13 (2014)
[50] G. H. Kassier, M. Hayes, F. D. Auret, M. Diale, and B. G. Svensson, " Hall effect studies of donors and acceptors in different types of bulk ZnO modified by annealing and hydrogen implantation ", Physical Status Solidi C, Volume 5, Issue 2, 569-572 (2008)
[51] N. Baghdadi, N. Salah, A. Alshahrie, and K. Koumoto, " Microwave Irradiation to Produce High Performance Thermoelectric Material Based on Al Doped ZnO Nanostructures ", Crystals, 10(7), 610 (2020)
[52] H. J. Kim, Y. H. Chung, I. T. Jang, K. W. Jang, and H. S. Kim, " Effects of Seed Layer Coating and Oxygen Plasma Treatment on the Growth of ZnO Nanorods for UV Photodetector Applications ", Journal of Nanascience and Nanotechnology, Volume 20, 4340-4343 (2020)
[53] S. C. Jang, J. Y. Kim, K. J. Lee, and H. S. Kim, " Flexible Oxide Thin-Film Transistors Fabricated at Room Temperature By Introducing Polymer Dielectric and Microwave Annealing ", The Electrochemical Society, Volume Ma2020-02, H03 (2020)
[54] M. M. Ma, Y. B. Huang, J. Liu, K. Liu, Z. Wang, C. Zhao, S. C. Qu, and Z. G. Wang, " Engineering the photoelectrochemical behaviors of ZnO for efficient solar water splitting ", Journal of Semiconductors, Volume 41 (2020)
電子全文 電子全文(網際網路公開日期:20240824)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊