跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 19:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫柏堯
研究生(外文):Sun, Bo-Yao
論文名稱:利用聚多巴胺複合高分子作為表面活性劑來製備Cu@Cu2O複合微孔濾膜用於水中溴離子之移除
論文名稱(外文):Polydopamine and its composites as surface functionalization agents for the fabrication of composite Cu@Cu2O micromembrane to remove bromine ions in aqueous solution
指導教授:吳樸偉
指導教授(外文):Wu, Pu-Wei
口試委員:劉典謨洪崧富吳樸偉
口試委員(外文):Liu, Dean-MoHung, Sung-FuWu, Pu-Wei
口試日期:2021-10-25
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:62
中文關鍵詞:聚丙烯濾膜聚多巴胺聚乙烯亞胺多孔銅溴離子移除
外文關鍵詞:Polypropylene micromembranePolydopaminePolyethyleneiminePorous CuBromine ions reomval
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這項研究中,我們在超疏水聚丙烯膜上共沉積聚乙烯亞胺和聚多巴胺作為親水活性改質層,以實現化學鍍銅的前處理過程。並且採用電化學方法將Cu微孔濾膜氧化成Cu2O微膜。Langmuir和Freundlich此兩個模型用於了解Br-在Cu2O微孔濾膜上在吸收平衡上的性質,並使用pseudo-second-model研究Br-的去除動力學。此外使用不同的競爭性陰離子和不同的pH值來探索Cu2O微孔濾膜在不同環境中Br-移除性能。Cu2O微孔濾膜的平衡吸附量為0.334mM/g,符合Langmuir吸附模型,即單層吸附。且由於CuBr的溶解度低,吸附的反應Cu2O 會與H+產生Cu+於水溶液中並且與Br-過飽和析出的化學過程,而此化學吸附動力學可歸於擬二級模型。
In this study, we codeposit polyethyleneimine and polydopamine on a superhydrophobic polypropylene membrane as a hydrophilic and active modification layer to achieve the pretreated process of electroless copper plating. Electrochemical method is used to oxidize Cu micromembrane to Cu2O micromembrane. Langmuir and Freundlich are used to understand the removal isotherm of Br- on Cu2O micromembrane, and pseudo-second-model is used to investigate the removal kinetic of Br-. Furthermore, different competitive anions and different pH values are used to explore the removal performance of Cu2O micromembrane in various environment. The equilibrium adsorption of Cu2O micromembrane is 0.334mM/g and fitting well to Langmuir adsorption model which is monolayer-adsorption. The adsorption is a chemical process which the Cu2O will react with H+ to form Cu+ in solution and Cu+ will further precipitate with Br- because of the low solubility of CuBr, and the chemisorption kinetic can be ascribed to pseudo-second-model.
摘 要 i
Abstract ii
Acknowledgments iii
Table of Content iv
List of tables vi
List of figures vii
Chapter 1. Introduction 1
1.1 Dopamine and polydopamine 1
1.2 Application of dopamine and polydopamine 3
1.3 Electroless deposition of copper 6
1.4 Cuprous oxide 8
1.5 Bromide 11
Chapter 2. Experimental 13
2.1 Chemical 13
2.2 Deposition of PDA/PEI on PP fibers 13
2.3 Electroless copper deposition on functionalized PPMM 14
2.4 Synthesis of Cu2O micromembrane 14
2.5 Materials characterization 15
2.6 Bromide romoval 16
2.6.1 Removal isotherm 16
2.6.2 Removal kinetic 17
2.6.3 The influence of pH value on the removal of Br- anions 17
2.6.4 Selective removal 18
Chapter 3. Results and discussion 19
3.1 PPMM@PDA/PEI (functionalized PPMM) 19
3.2 PPMM@PDA/PEI@Cu (Cu micromembrane) and PPMM@PDA/PEI@Cu@Cu2O (Cu2O micromembrane) 26
3.3 Bromide removal 49
Chapter 4. Conclusion 56
Chapter 5. References 57
1. Hornykiewicz, O., Dopamine (3-hydroxytyramine) and brain function. Pharmacological Reviews, 1966. 18(2): 925-964.
2. Iversen, S.D. and L.L. Iversen, Dopamine: 50 years in perspective. Trends in Neurosciences, 2007. 30(5): 188-193.
3. Schultz, W., Behavioral dopamine signals. Trends in Neurosciences, 2007. 30(5): 203-210.
4. Wise, R.A., Dopamine, learning and motivation. Nature Reviews Neuroscience, 2004. 5(6): 483-494.
5. Dreyer, D.R. et al., Elucidating the Structure of Poly(dopamine). Langmuir, 2012. 28(15): 6428-6435.
6. Kaushik, N. et al., Strategies for using polydopamine to induce biomineralization of hydroxyapatite on implant materials for bone tissue engineering. International Journal of Molecular Sciences, 2020. 21(18): 6544.
7. Du, X. et al., UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning. Advanced Materials, 2014. 26(47): 8029-8033.
8. Liu, Y., Ai, K. and Lu, L., Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chemical Reviews, 2014. 114(9): 5057-5115.
9. Dong, Y. et al., Preparation and characterization of SiO2/polydopamine/Ag nanocomposites with long-term antibacterial activity. Ceramics International, 2014. 40: 5605-5609.
10. Beckford, S. and Zou, M., Wear resistant PTFE thin film enabled by a polydopamine adhesive layer. Applied Surface Science, 2014. 292: 350-356.
11. Jiang, X. et al., Improving the biocompatibility of polymeric membrane potentiometric ion sensors by using a mussel-inspired polydopamine coating. Analytical Chemistry, 2019. 91(10): 6424-6429.
12. Hong, S.H. et al., Sprayable ultrafast polydopamine surface modifications. Advanced Materials Interfaces, 2016. 3(11): 1500857.
13. Zhang, Y. et al., Assembly of poly(dopamine) films mixed with a nonionic polymer. Langmuir, 2012. 28(51): 17585-17592.
14. Jiang, J. et al., Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone). ACS Applied Materials & Interfaces, 2013. 5(24): 12895-12904.
15. Chou, S.C. et al., Polydopamine and its composite film as an adhesion layer for cu electroless deposition on SiO2. Journal of The Electrochemical Society, 2020. 167(4): 042507.
16. Yang, F.K. and Zhao, B., Adhesion properties of self-polymerized dopamine thin film. The Open Surface Science Journal, 2011. 3(1): 115-122.
17. Zhou, Z. et al., Corrosion resistance and biocompatibility of polydopamine/hyaluronic acid composite coating on AZ31 magnesium alloy. Surfaces and Interfaces, 2020. 20: 100560.
18. Chen, L. et al., Mg-Zn-Y-Nd coated with citric acid and dopamine by layer-by-layer self-assembly to improve surface biocompatibility. Science China Technological Sciences, 2018. 61(8): 1228-1237.
19. Cui, J. et al., Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules, 2012. 13(8): 2225-2228.
20. Wang, X. et al., N-doping of graphene through electrothermal reactions with ammonia. Science, 2009. 324(5928): 768-771.
21. Wei, D. et al., Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano letters, 2009. 9(5): 1752-1758.
22. Hassan, M. et al., Synergistic effect of heat treatment and concentration of polydopamine enhance the electrochemical performances of hollow nitrogen-doped carbon microspheres. Ionics, 2019. 25(10): 4685-4701.
23. Matsui, J. et al., Electroless copper plating onto polyimide using polymer nanosheet as a nano-adhesive. Polymer Journal, 2007. 39(1): 41-47.
24. Deckert, C., Electroless copper plating, a review: Part I. Plating and surface finishing, 1995. 82(2): 48-55.
25. Vaškelis, A. and Norkus, E., Autocatalytic processes of copper(II) and silver(I) reduction by cobalt(II) complexes. Electrochimica Acta, 1999. 44(21): 3667-3677.
26. Nagasubramanian, G., Gioda, A.S. and Bard, A.J., Semiconductor electrodes: XXXVII. photoelectrochemical behavior of p‐type in acetonitrile solutions. Journal of the Electrochemical Society, 1981. 128(10): 2158.
27. Kondo, J., Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chemical Communications, 1998(3): 357-358.
28. Zhang, Y.G. et al., In situ fenton reagent generated from tio2/cu2o composite film:  a new way to utilize TiO2 under visible light irradiation. Environmental Science & Technology, 2007. 41(17): 6264-6269.
29. Zhang, L. et al., Photocatalytic reforming of glucose under visible light over morphology controlled Cu2O: efficient charge separation by crystal facet engineering. Chemical Communications, 2014. 50(2): 192-194.
30. Paracchino, A. et al., Highly active oxide photocathode for photoelectrochemical water reduction. Nature Materials, 2011. 10(6): 456-461.
31. Conway, B.E., Electrochemical supercapacitors: scientific fundamentals and technological applications. 2013: Springer Science & Business Media.
32. Conway, B.E., Electrochemical capacitors: Their nature, function, and applications. Electrochemistry Encyclopedia, 2003.
33. He, D. et al., Construction of leaf-like CuO–Cu2O nanocomposites on copper foam for high-performance supercapacitors. Dalton Transactions, 2017. 46(10): 3318-3324.
34. Dong, C. et al., 3D binder-free Cu2O@ Cu nanoneedle arrays for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2014. 2(43): 18229-18235.
35. Celante, V. and Freitas, M.B.J.G., Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques. Journal of Applied Electrochemistry, 2009. 40: 233-239.
36. Stumm, W., Aquatic surface chemistry: Chemical processes at the particle-water interface. Vol. 87. 1987: John Wiley & Sons.
37. Lefevre, G. et al., Sorption of iodide on cuprite (Cu2O). Langmuir, 2000. 16(10): 4519-4527.
38. Mao, P. et al., Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water. Journal of Hazardous Materials, 2017. 328: 21-28.
39. Cowman, G.A. and Singer, P.C., Effect of bromide ion on haloacetic acid speciation resulting from chlorination and chloramination of aquatic humic substances. Environmental Science & Technology, 1995. 30(1): 16-24.
40. Richardson, S.D. et al., Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutation Research/Reviews in Mutation Research, 2007. 636(1-3): 178-242.
41. Valero, F. and Arbós, R., Desalination of brackish river water using Electrodialysis Reversal (EDR): Control of the THMs formation in the Barcelona (NE Spain) area. Desalination, 2010. 253(1-3): 170-174.
42. Kumar, K. and Margerum, D.W., Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. Inorganic Chemistry, 1987. 26(16): 2706-2711.
43. Trofe, T.W., Inman, G.W. and Johnson, J.D., Kinetics of monochloramine decomposition in the presence of bromide. Environmental Science & Technology, 1980. 14(5): 544-549.
44. Dorji, P. et al., Membrane capacitive deionisation as an alternative to the 2nd pass for seawater reverse osmosis desalination plant for bromide removal. Desalination, 2018. 433: 113-119.
45. Chellam, S., Effects of nanofiltration on trihalomethane and haloacetic acid precursor removal and speciation in waters containing low concentrations of bromide ion. Environmental Science & Technology, 2000. 34(9): 1813-1820.
46. Lin, D., Liang, H. and Li, G., Factors affecting the removal of bromate and bromide in water by nanofiltration. Environmental Science and Pollution Research, 2020. 27(20): 24639-24649.
47. Lv, L. et al., Bromide ion removal from contaminated water by calcined and uncalcined MgAl-CO3 layered double hydroxides. Journal of Hazardous Materials, 2008. 152(3): 1130-1137.
48. Kentjono, L. et al., Removal of boron and iodine from optoelectronic wastewater using Mg–Al (NO3) layered double hydroxide. Desalination, 2010. 262(1-3): 280-283.
49. Chubar, N., New inorganic (an) ion exchangers based on Mg–Al hydrous oxides:(Alkoxide-free) sol–gel synthesis and characterisation. Journal of Colloid and Interface Science, 2011. 357(1): 198-209.
50. Sánchez-Polo, M. et al., Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels. Journal of Colloid and Interface Science, 2006. 300(1): 437-441.
51. Chen, C., Apul, O.G. and Karanfil, T., Removal of bromide from surface waters using silver impregnated activated carbon. Water research, 2017. 113: 223-230.
52. Ding, L. et al., Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin. Chemical Engineering Journal, 2012. 181: 360-370.
53. Ge, F. and Zhu, L., Effects of coexisting anions on removal of bromide in drinking water by coagulation. Journal of Hazardous Materials, 2008. 151(2-3): 676-681.
54. Shi, M. et al., Removal of bromide from water by adsorption on nanostructured δ-Bi2O3. Journal of Nanoscience and Nanotechnology, 2017. 17(9): 6951-6956.
55. Della Vecchia, N.F. et al., Building‐block diversity in polydopamine underpins a multifunctional eumelanin‐type platform tunable through a quinone control point. Advanced Functional Materials, 2013. 23(10): 1331-1340.
56. Liu, Y. et al., Mussel-inspired modification of carbon fiber via polyethyleneimine/polydopamine co-deposition for the improved interfacial adhesion. Composites Science and Technology, 2017. 151: 164-173.
57. Wei, H. et al., Stability of polydopamine and poly (DOPA) melanin-like films on the surface of polymer membranes under strongly acidic and alkaline conditions. Colloids and Surfaces B: Biointerfaces, 2013. 110: 22-28.
58. Ma, S. et al., Electroless copper plating of inkjet-printed polydopamine nanoparticles: A facile method to fabricate highly conductive patterns at near room temperature. ACS applied materials & interfaces, 2014. 6(22): 19494-19498.
59. Vaškelis, A., Norkus, E. and Jačiauskienė, J., Kinetics of electroless copper deposition using cobalt (II)-ethylenediamine complex compounds as reducing agents. Journal of Applied Electrochemistry, 2002. 32(3): 297-303.
60. Wang, P., Ng, Y.H. and Amal, R., Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale, 2013. 5(7): 2952-2958.
61. Ghodselahi, T. et al., XPS study of the Cu@Cu2O core-shell nanoparticles. Applied Surface Science, 2008. 255(5): 2730-2734.
62. Mayer, J.W. and Lau, S.S., Electronic materials science: for integrated circuits in Si and GaAs. 1990: Prentice Hall.
63. Schroder, D.K., Semiconductor material and device characterization. 2015: John Wiley & Sons.
64. Korzeniewska, E. et al., Analysis of resistance to bending of metal electroconductive layers deposited on textile composite substrates in PVD process. Scientific Reports, 2020. 10(1): 1-11.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top