|
1. 曾子晏, 電鍍銅-銅晶圓接合中孔洞的演變. 2021年7月, 國立陽明交通大學. 2. Chen, C., et al. Low-temperature and low-pressure direct copper-to-copper bonding by highly (111)-oriented nanotwinned Cu. in 2016 Pan Pacific Microelectronics Symposium (Pan Pacific). 2016. IEEE. 3. Chau, R., et al., Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE transactions on nanotechnology, 2005. 4(2): p. 153-158. 4. https://www.palomartechnologies.com/blog/improve-wire-bond-capability-and-reliability-through-use-of-auxiliary-wires. 5. https://technews.tw/2020/10/01/hidas-chiplets-3d-2-5d/. 6. Johnson, S., Via first middle last or after? 3D Packaging Newsletter on 3D IC, TSV, WLP & Embedded Technologies, 2009. 7. 國立交通大學材料所 吳耀銓教授 材料接合技術導論"上課講義". 8. Fan, J. and C.S. Tan, Low temperature wafer-level metal thermo-compression bonding technology for 3D integration. Metallurgy-Advances in Materials and Processes, 2012. 52(2): p. 302-311. 9. Tan, C., et al., Observation of interfacial void formation in bonded copper layers. Applied Physics Letters, 2005. 87(20): p. 201909. 10. Lai, T.-Y., et al., Evolution Kinetics of Voids in Electroplated Cu-Cu Wafer Bonding. ECS Journal of Solid State Science and Technology, 2021. 11. Wu, Y.S., et al., Bonding Mechanisms of Roughened Nanotwinned-Cu Surface at Temperature as Low as 120° C. ECS Journal of Solid State Science and Technology, 2020. 9(12): p. 124005. 12. Haisma, J. and G. Spierings, Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: historical review in a broader scope and comparative outlook. Materials Science and Engineering: R: Reports, 2002. 37(1-2): p. 1-60. 13. Wallis, G. and D.I. Pomerantz, Field assisted glass‐metal sealing. Journal of applied physics, 1969. 40(10): p. 3946-3949. 14. Antypas, G. and J. Edgecumbe, Glass− sealed GaAs− AlGaAs transmission photocathode. Applied Physics Letters, 1975. 26(7): p. 371-372. 15. Lasky, J., Wafer bonding for silicon‐on‐insulator technologies. Applied Physics Letters, 1986. 48(1): p. 78-80. 16. Gösele, U. and Q.-Y. Tong, Semiconductor wafer bonding. Annual review of materials science, 1998. 28(1): p. 215-241. 17. Tilli, M., et al., Handbook of silicon based MEMS materials and technologies. 2020: Elsevier. 18. Puligadda, R., et al., High-performance temporary adhesives for wafer bonding applications. MRS Online Proceedings Library (OPL), 2006. 970. 19. Wan, K., et al., Pressurized internal lenticular cracks at healed mica interfaces. Journal of materials research, 1993. 8(5): p. 1128-1136. 20. Tong, Q.Y., et al., Hydrophobic silicon wafer bonding. Applied physics letters, 1994. 64(5): p. 625-627. 21. Banerjee, K., et al., 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proceedings of the IEEE, 2001. 89(5): p. 602-633. 22. Swinnen, B., et al. 3D integration by Cu-Cu thermo-compression bonding of extremely thinned bulk-Si die containing 10 μm pitch through-Si vias. in 2006 International Electron Devices Meeting. 2006. IEEE. 23. Wang, C. and T. Suga. A novel room-temperature wafer direct bonding method by fluorine containing plasma activation. in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC). 2010. IEEE. 24. Huang, Y.-P., et al., Novel Cu-to-Cu Bonding With Ti Passivation at 180$^{\circ}{\rm C} $ in 3-D Integration. IEEE electron device letters, 2013. 34(12): p. 1551-1553. 25. Agrawal, P.M., B.M. Rice, and D.L. Thompson, Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surface Science, 2002. 515(1): p. 21-35. 26. Tseng, C.-H., K.-N. Tu, and C. Chen, Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding. Scientific reports, 2018. 8(1): p. 1-7. 27. Kingery, W.D., H.K. Bowen, and D.R. Uhlmann, Introduction to ceramics. Vol. 17. 1976: John wiley & sons. 28. Liu, C.-M., et al., Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific reports, 2015. 5(1): p. 1-11. 29. 謝承佑 and 吳耀銓, 砷化鎵/矽晶圓接合介面形態與電性研究. 2008. 30. Cakir, O., Copper etching with cupric chloride and regeneration of waste etchant. journal of materials processing technology, 2006. 175(1-3): p. 63-68. 31. Espenson, J.H., Chemical kinetics and reaction mechanisms. Vol. 102. 1995: Citeseer. 32. Ashby, M., A first report on sintering diagrams. Acta Metallurgica, 1974. 22(3): p. 275-289. 33. Wang, Y., et al., Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms. Nuclear Instruments and Methods in Physics Research B, 2001. 180(1-4): p. 251-256. 34. Derby, B. and E. Wallach, Theoretical model for diffusion bonding. Metal Science, 1982. 16(1): p. 49-56. 35. Derby, B. and E. Wallach, Diffusion bonds in copper. Journal of materials science, 1984. 19(10): p. 3140-3148. 36. Hill, A. and E. Wallach, Modelling solid-state diffusion bonding. Acta Metallurgica, 1989. 37(9): p. 2425-2437. 37. 王昱翔, 三維積體電路中(111)面銅-銅接合的孔洞演變. 2020, 國立陽明交通大學. 38. 張峻瑋, 三維積體電路中銅銅接合的孔洞演變. 2019, 國立陽明交通大學. p. 57-58.
|