跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 12:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:褚亦洋
研究生(外文):Chu, Yi-Yang
論文名稱:3DIC中(111)面奈米雙晶銅對銅介面孔洞演變的影響
論文名稱(外文):Effect of (111)-oriented nanotwinned copper on the evolution of voids in Cu-Cu wafer bonding for 3DIC
指導教授:吳耀銓
指導教授(外文):Wu, Yew-Chung
口試委員:陳智林昆霖
口試委員(外文):Chen, ChihLin, Kun-Lin
口試日期:2021-10-14
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:79
中文關鍵詞:三維積體電路銅銅接合孔洞演變(111)平面奈米雙晶銅可靠度
外文關鍵詞:Three-dimensional integrated circuit (3DIC)Copper-copper bondingVoids evolution(111)-oriented nanotwinned copperReliability
相關次數:
  • 被引用被引用:1
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的快速發展,電子產品不斷追求輕薄短小等趨勢,逐漸逼近摩爾定律的極限,而為了讓晶片的效能持續提升,後段封裝技術開始被重視,三維積體電路(3DIC)也隨之被發展出來。過去的3DIC多是利用矽穿孔(Through Silicon Via;TSV)達到垂直整合的結果,現今由於銅優異的物理特性,而發展出銅銅直接接合技術。銅銅接合前,需要通過化學機械研磨(CMP)使接合表面平坦化,越平坦的表面,其接合後介面的缺陷則越少,然而即使在現今的研磨技術下,銅表面仍無法達成原子級的平坦,意味著接合後的介面必定會有孔洞的產生,這些孔洞則會影響電子元件日後的可靠度以及性能。為了探究孔洞在接合介面中的演變,本實驗室過去曾利用表面粗化後的電鍍銅進行接合,並觀察接合後的孔洞形貌變化[1],而(111)優選方向的奈米雙晶銅則由於其優異的性質,被發現可在150°C的低溫下完成接合[2],因此本實驗將利用(111)優選方向的奈米雙晶銅與隨機晶面方向之電鍍銅進行接合,觀察其介面孔洞形貌的變化,並和過去的研究進行比較。

本實驗使用(111)平面奈米雙晶銅與隨機晶面方向之電鍍銅兩種試片,並利用溫度、時間、壓力以及有無進行蝕刻處理等四種參數進行接合,接合後透過聚焦離子束(FIB)觀察孔洞形貌,並將接合介面與孔洞量化以孔洞高度(Void height)、孔洞比例(Void fraction)以及接合比例(Bonding fraction)三種參數進行分析,在觀察後發現,擁有奈米雙晶銅之接合試片,在150°C較短的退火時間便可達到良好的接合結果,且當退火時間拉長到24小時,可觀察到明顯的表面擴散,而單純用電鍍銅進行接合的試片,在退火150°C 24小時後,才可成功接合。
With the rapid development of technology, electronic products were made even tinier and thinner. The size of the semiconductor has gradually approached the limit of Moore's Law. To continuously improve the performance of the chip, back-end packaging technology has been advanced and valued. The three-dimensional integrated circuit (3DIC) has also been generated. In the past, 3DIC was mostly used Through Silicon Via (TSV) to achieve the result of vertical integration. Nowadays, due to the excellent physical properties of copper, copper bonding technology has been developed. Before bonding copper, chemical mechanical polishing (CMP) is required to flatten the bonding surface. The flatter the surface, the fewer defects on the bonding interface would cause. However, even with today’s CMP technology, scientists are still unable to make the copper surface flatten as atomic level flatness, which means that the bonding interface will still have voids. These voids will influence the reliability and performance of the electronic components. To explore the evolution of voids on the bonding interface, we used to utilize electroplated copper with roughened surfaces to bond and then observing the transformation of voids on it. Due to the excellent properties of highly (111)-oriented nanotwinned copper (nt-Cu) was found being able to be bonded at a low temperature of 150°C, the experiment will use nt-Cu and randomly oriented electroplated copper for bonding. After then, the transformation of the voids will be observed and compared with the past studies.

This experiment will use two specimens which include nt-Cu and randomly oriented electroplated copper. The temperature, time, pressure, and etching treatment will all be the four parameters for bonding. After bonding, the focused ion beam (FIB) will be used to observe the transformation of the voids. The bonding interface and voids are quantified and analyzed by three parameters: Void height (VH), Void fraction (VF), and Bonding fraction (BF). After the observation, it is found that the bonding will achieve a better result with nt-Cu with a short annealing time at 150°C.

Moreover, when the annealing time is extended to 24 hours, surface diffusion becomes more obvious. On the contrary, the randomly oriented electroplated copper can only be successfully bonded after annealing at 150°C for 24 hours.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1前言 1
1.2三維積體電路(3DIC)之進程與矽穿孔(TSV)技術 3
1.3 研究動機 7
第二章 文獻回顧 9
2.1 晶圓接合簡介 9
2.1.1晶圓接合歷史 9
2.1.2晶圓接合的種類 10
2.1.3影響晶圓接合之因素 12
2.2 銅銅接合簡介 15
2.2.1銅銅接合種類 15
2.2.2銅銅接合機制 17
第三章 實驗步驟與研究方法 19
3.1 實驗流程與目的 19
3.2 實驗試片製備 20
3.3 實驗試片前處理 22
3.4 實驗試片接合 23
3.5 實驗試片退火 24
3.6 實驗試片分析 25
第四章 結果與討論 26
4.1 實驗系統分類 26
4.2 實驗試片表面形貌 27
4.3 孔洞擴散機制及理論 34
4.4 WE FNt系統分析 36
4.4.1 200°C預接合與退火分析 36
4.4.2 150°C預接合與退火分析 41
4.4.3 孔洞量化分析 43
4.5 WE FNt系統與WE FE系統之比較 47
4.5.1 200°C預接合與退火分析 47
4.5.2 150°C預接合與退火分析 49
4.5.3影響孔洞差異之因素 50
4.5.4孔洞量化分析 52
4.6 WNt FE系統分析 54
4.6.1 200°C預接合與退火分析 54
4.6.2 150°C預接合與退火分析 57
4.6.3 孔洞量化分析 58
4.7 WNt FE系統與WE FE系統之比較 61
4.7.1 200°C預接合與退火分析 61
4.7.2 150°C預接合與退火分析 63
4.7.3 孔洞量化分析 64
4.8 WE FNt系統與WNt FE系統之比較 66
4.8.1 200°C預接合與退火分析 66
4.8.2 150°C預接合與退火分析 68
4.8.3 孔洞量化分析 69
4.9 孔洞演化理論 72
第五章 結論 75
參考文獻 77
1. 曾子晏, 電鍍銅-銅晶圓接合中孔洞的演變. 2021年7月, 國立陽明交通大學.
2. Chen, C., et al. Low-temperature and low-pressure direct copper-to-copper bonding by highly (111)-oriented nanotwinned Cu. in 2016 Pan Pacific Microelectronics Symposium (Pan Pacific). 2016. IEEE.
3. Chau, R., et al., Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE transactions on nanotechnology, 2005. 4(2): p. 153-158.
4. https://www.palomartechnologies.com/blog/improve-wire-bond-capability-and-reliability-through-use-of-auxiliary-wires.
5. https://technews.tw/2020/10/01/hidas-chiplets-3d-2-5d/.
6. Johnson, S., Via first middle last or after? 3D Packaging Newsletter on 3D IC, TSV, WLP & Embedded Technologies, 2009.
7. 國立交通大學材料所 吳耀銓教授 材料接合技術導論"上課講義".
8. Fan, J. and C.S. Tan, Low temperature wafer-level metal thermo-compression bonding technology for 3D integration. Metallurgy-Advances in Materials and Processes, 2012. 52(2): p. 302-311.
9. Tan, C., et al., Observation of interfacial void formation in bonded copper layers. Applied Physics Letters, 2005. 87(20): p. 201909.
10. Lai, T.-Y., et al., Evolution Kinetics of Voids in Electroplated Cu-Cu Wafer Bonding. ECS Journal of Solid State Science and Technology, 2021.
11. Wu, Y.S., et al., Bonding Mechanisms of Roughened Nanotwinned-Cu Surface at Temperature as Low as 120° C. ECS Journal of Solid State Science and Technology, 2020. 9(12): p. 124005.
12. Haisma, J. and G. Spierings, Contact bonding, including direct-bonding in a historical and recent context of materials science and technology, physics and chemistry: historical review in a broader scope and comparative outlook. Materials Science and Engineering: R: Reports, 2002. 37(1-2): p. 1-60.
13. Wallis, G. and D.I. Pomerantz, Field assisted glass‐metal sealing. Journal of applied physics, 1969. 40(10): p. 3946-3949.
14. Antypas, G. and J. Edgecumbe, Glass− sealed GaAs− AlGaAs transmission photocathode. Applied Physics Letters, 1975. 26(7): p. 371-372.
15. Lasky, J., Wafer bonding for silicon‐on‐insulator technologies. Applied Physics Letters, 1986. 48(1): p. 78-80.
16. Gösele, U. and Q.-Y. Tong, Semiconductor wafer bonding. Annual review of materials science, 1998. 28(1): p. 215-241.
17. Tilli, M., et al., Handbook of silicon based MEMS materials and technologies. 2020: Elsevier.
18. Puligadda, R., et al., High-performance temporary adhesives for wafer bonding applications. MRS Online Proceedings Library (OPL), 2006. 970.
19. Wan, K., et al., Pressurized internal lenticular cracks at healed mica interfaces. Journal of materials research, 1993. 8(5): p. 1128-1136.
20. Tong, Q.Y., et al., Hydrophobic silicon wafer bonding. Applied physics letters, 1994. 64(5): p. 625-627.
21. Banerjee, K., et al., 3-D ICs: A novel chip design for improving deep-submicrometer interconnect performance and systems-on-chip integration. Proceedings of the IEEE, 2001. 89(5): p. 602-633.
22. Swinnen, B., et al. 3D integration by Cu-Cu thermo-compression bonding of extremely thinned bulk-Si die containing 10 μm pitch through-Si vias. in 2006 International Electron Devices Meeting. 2006. IEEE.
23. Wang, C. and T. Suga. A novel room-temperature wafer direct bonding method by fluorine containing plasma activation. in 2010 Proceedings 60th Electronic Components and Technology Conference (ECTC). 2010. IEEE.
24. Huang, Y.-P., et al., Novel Cu-to-Cu Bonding With Ti Passivation at 180$^{\circ}{\rm C} $ in 3-D Integration. IEEE electron device letters, 2013. 34(12): p. 1551-1553.
25. Agrawal, P.M., B.M. Rice, and D.L. Thompson, Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surface Science, 2002. 515(1): p. 21-35.
26. Tseng, C.-H., K.-N. Tu, and C. Chen, Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding. Scientific reports, 2018. 8(1): p. 1-7.
27. Kingery, W.D., H.K. Bowen, and D.R. Uhlmann, Introduction to ceramics. Vol. 17. 1976: John wiley & sons.
28. Liu, C.-M., et al., Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Scientific reports, 2015. 5(1): p. 1-11.
29. 謝承佑 and 吳耀銓, 砷化鎵/矽晶圓接合介面形態與電性研究. 2008.
30. Cakir, O., Copper etching with cupric chloride and regeneration of waste etchant. journal of materials processing technology, 2006. 175(1-3): p. 63-68.
31. Espenson, J.H., Chemical kinetics and reaction mechanisms. Vol. 102. 1995: Citeseer.
32. Ashby, M., A first report on sintering diagrams. Acta Metallurgica, 1974. 22(3): p. 275-289.
33. Wang, Y., et al., Nuclear instruments and methods in physics research section B: beam interactions with materials and atoms. Nuclear Instruments and Methods in Physics Research B, 2001. 180(1-4): p. 251-256.
34. Derby, B. and E. Wallach, Theoretical model for diffusion bonding. Metal Science, 1982. 16(1): p. 49-56.
35. Derby, B. and E. Wallach, Diffusion bonds in copper. Journal of materials science, 1984. 19(10): p. 3140-3148.
36. Hill, A. and E. Wallach, Modelling solid-state diffusion bonding. Acta Metallurgica, 1989. 37(9): p. 2425-2437.
37. 王昱翔, 三維積體電路中(111)面銅-銅接合的孔洞演變. 2020, 國立陽明交通大學.
38. 張峻瑋, 三維積體電路中銅銅接合的孔洞演變. 2019, 國立陽明交通大學. p. 57-58.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊