跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳杰叡
研究生(外文):Wu, Chieh-Jui
論文名稱:電化學法製備分子植入式高分子於抗壞血酸之測定
論文名稱(外文):Electrochemical Synthesis of Molecularly Imprinted Polymer for Determination of Ascorbic Acid
指導教授:吳樸偉
口試日期:2021-10-28
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:43
中文關鍵詞:抗壞血酸高分子模板分子選擇性偵測
外文關鍵詞:ascorbic acidpolymertemplate moleculeselectivitydetection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1.The introduction and literature review 1
1.1 The importance of ascorbic acid 1
1.2 Electropolymerization 4
1.2.1 Introduction 4
1.2.2 Techniques used in electropolymerization 9
1.3 Molecularly imprinted polymer 11
1.3.1 Introduction 11
1.3.2 Strategies for MIP formation 12
1.3.3 Methods for MIP fabrication 14
1.3.4 Fabrication of MIP via electropolymerization 16
1.3.5 Electrochemical signal readout for MIP 18
1.3.6 Challenges for MIP 20
2. Experimental 24
2.1 Reagents and apparatus 24
2.2 Fabrication of MIP on Au-coated Si substrate 24
3. Results and discussion 26
3.1 Electropolymerization of molecularly imprinted polypyrrole 26
3.2 Characterization of MIP 26
3.3 The adsorption characteristic and electrochemical analysis of MIP 30
3.4 The interference test for MIP 31
4. Conclusion 39
1. Devaki, S.J. and Raveendran, R.L., Vitamin C: sources, functions, sensing and analysis, in Vitamin C. 2017, IntechOpen.
2. Honarbakhsh, S. and Schachter, M., Vitamins and cardiovascular disease. British Journal of Nutrition, 2008. 101(8): 1113-1131.
3. Savini, I., Rossi, A., Duranti, G., Avigliano, L., Catani, M.V., and Melino, G., Characterization of keratinocyte differentiation induced by ascorbic acid: protein kinase C involvement and vitamin C homeostasis. Journal of Investigative Dermatology, 2002. 118(2): 372-379.
4. Rácz, E., Kecskés, T., and Parlagh-Huszár, K., HPLC method for determination of ascorbic acid in fruits and vegetables. Periodica Polytechnica Chemical Engineering, 1991. 35(1-2): 23-30.
5. Mitic, S.S., Kostic, D.A., Naskovic-okic, D., and Mitic, M.N., Rapid and reliable HPLC method for the determination of vitamin C in pharmaceutical samples. Tropical Journal of Pharmaceutical Research, 2011. 10(1).
6. Malinauskas, A., Garjonyt, R., Mažeikien, R., and Jurevičiūt, I., Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications: a review. Talanta, 2004. 64(1): 121-129.
7. Bryan, A.M., Santino, L.M., Lu, Y., Acharya, S., and D’Arcy, J.M., Conducting polymers for pseudocapacitive energy storage. Chemistry of Materials, 2016. 28(17): 5989-5998.
8. Sadki, S., Schottland, P., Brodie, N., and Sabouraud, G., The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 2000. 29(5): 283-293.
9. Genies, E., Bidan, G., and Diaz, A., Spectroelectrochemical study of polypyrrole films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983. 149(1-2): 101-113.
10. Fomo, G., Waryo, T., Feleni, U., Baker, P., and Iwuoha, E., Electrochemical Polymerization. Functional Polymers; Jafar Mazumder, MA, Sheardown, H., Al-Ahmed, A., Eds, 2019: 105-131.
11. Hung, P.-S., Wang, G.-R., Chung, W.-A., Chiang, T.-T., and Wu, P.-W., Green synthesis of Ni@ PEDOT and Ni@ PEDOT/Au (core@ shell) inverse opals for simultaneous detection of ascorbic acid, dopamine, and uric acid. Nanomaterials, 2020. 10(9): 1722.
12. Lahcen, A.A. and Amine, A., Recent advances in electrochemical sensors based on molecularly imprinted polymers and nanomaterials. Electroanalysis, 2019. 31(2): 188-201.
13. Chen, L., Xu, S., and Li, J., Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews, 2011. 40(5): 2922-2942.
14. Saylan, Y., Akgönüllü, S., Yavuz, H., Ünal, S., and Denizli, A., Molecularly imprinted polymer based sensors for medical applications. Sensors, 2019. 19(6): 1279.
15. Chen, L., Wang, X., Lu, W., Wu, X., and Li, J., Molecular imprinting: perspectives and applications. Chemical Society Reviews, 2016. 45(8): 2137-2211.
16. Wulff, G., Molecular imprinting in cross‐linked materials with the aid of molecular templates—a way towards artificial antibodies. Angewandte Chemie International Edition in English, 1995. 34(17): 1812-1832.
17. Shen, F. and Ren, X., Covalent molecular imprinting made easy: a case study of mannose imprinted polymer. RSC Advances, 2014. 4(25): 13123-13125.
18. Mosbach, K., Molecular imprinting. Trends in Biochemical Sciences, 1994. 19(1): 9-14.
19. Sharma, P.S., Pietrzyk-Le, A., D’souza, F., and Kutner, W., Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Analytical and Bioanalytical Chemistry, 2012. 402(10): 3177-3204.
20. Okutucu, B., Önal, S., and Telefoncu, A., Noncovalently galactose imprinted polymer for the recognition of different saccharides. Talanta, 2009. 78(3): 1190-1193.
21. Boulanouar, S., Mezzache, S., Combès, A., and Pichon, V., Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta, 2018. 176: 465-478.
22. Bitas, D. and Samanidou, V., Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk. Molecules, 2018. 23(2): 316.
23. Mayes, A.G. and Mosbach, K., Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Analytical Chemistry, 1996. 68(21): 3769-3774.
24. Shen, X. and Ye, L., Molecular imprinting in Pickering emulsions: a new insight into molecular recognition in water. Chemical Communications, 2011. 47(37): 10359-10361.
25. Long, Y., Philip, J.Y., Schillen, K., Liu, F., and Ye, L., Insight into molecular imprinting in precipitation polymerization systems using solution NMR and dynamic light scattering. Journal of Molecular Recognition, 2011. 24(4): 619-630.
26. Sharma, P.S., Pietrzyk-Le, A., D’souza, F., and Kutner, W., Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Analytical and Bioanalytical Chemistry, 2012. 402(10): 3177-3204.
27. Rezaei, B., Boroujeni, M.K., and Ensafi, A.A., A novel electrochemical nanocomposite imprinted sensor for the determination of lorazepam based on modified polypyrrole@ sol-gel@ gold nanoparticles/pencil graphite electrode. Electrochimica Acta, 2014. 123: 332-339.
28. Serrano, V.M., Cardoso, A.R., Diniz, M., and Sales, M.G.F., In-situ production of Histamine-imprinted polymeric materials for electrochemical monitoring of fish. Sensors and Actuators B: Chemical, 2020. 311: 127902.
29. Ratautaite, V., Nesladek, M., Ramanaviciene, A., Baleviciute, I., and Ramanavicius, A., Evaluation of histamine imprinted polypyrrole deposited on boron doped nanocrystalline diamond. Electroanalysis, 2014. 26(11): 2458-2464.
30. Lian, W., Liu, S., Wang, L., and Liu, H., A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes. Biosensors and Bioelectronics, 2015. 73: 214-220.
31. Lee, M.-H., Thomas, J.L., Liao, C.-L., Jurcevic, S., Crnogorac-Jurcevic, T., and Lin, H.-Y., Polymers imprinted with three REG1B peptides for electrochemical determination of Regenerating Protein 1B, a urinary biomarker for pancreatic ductal adenocarcinoma. Microchimica Acta, 2017. 184(6): 1773-1780.
32. Li, J., Jiang, F., Li, Y., and Chen, Z., Fabrication of an oxytetracycline molecular-imprinted sensor based on the competition reaction via a GOD-enzymatic amplifier. Biosensors and Bioelectronics, 2011. 26(5): 2097-2101.
33. Kong, Y., Shan, X., Ma, J., Chen, M., and Chen, Z., A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly (o-phenylenediamine-co-o-aminophenol). Analytica Chimica Acta, 2014. 809: 54-60.
34. Yan, C., Liu, X., Zhang, R., Chen, Y., and Wang, G., A selective strategy for determination of ascorbic acid based on molecular imprinted copolymer of o-phenylenediamine and pyrrole. Journal of Electroanalytical Chemistry, 2016. 780: 276-281.
35. Zhai, Y., Wang, D., Liu, H., Zeng, Y., Yin, Z., and Li, L., Electrochemical molecular imprinted sensors based on electrospun nanofiber and determination of ascorbic acid. Analytical Sciences, 2015. 31(8): 793-798.
36. Özcan, L., Sahin, M., and Sahin, Y., Electrochemical preparation of a molecularly imprinted polypyrrole-modified pencil graphite electrode for determination of ascorbic acid. Sensors, 2008. 8(9): 5792-5805.
37. Oliveira, S., Luzardo, J., Silva, L., Aguiar, D., Senna, C., Verdan, R., Kuznetsov, A., Vasconcelos, T., Archanjo, B., and Achete, C., High-performance electrochemical sensor based on molecularly imprinted polypyrrole-graphene modified glassy carbon electrode. Thin Solid Films, 2020. 699: 137875.
38. Yarman, A. and Scheller, F.W., How reliable is the electrochemical readout of MIP sensors? Sensors, 2020. 20(9): 2677.
39. Fojta, M., Havran, L., Pivonkova, H., Horakova, P., and Hocek, M., Redox labels and indicators based on transition metals and organic electroactive moieties for electrochemical nucleic acids sensing. Current Organic Chemistry, 2011. 15(17): 2936-2949.
40. Erdem, A., Eksin, E., Kadikoylu, G., and Yildiz, E., Voltammetric detection of miRNA hybridization based on electroactive indicator-cobalt phenanthroline. International Journal of Biological Macromolecules, 2020. 158: 819-825.
41. Özcan, L. and Şahin, Y., Determination of paracetamol based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite electrode. Sensors and Actuators B: Chemical, 2007. 127(2): 362-369.
42. Zhai, C., Lu, Q., Chen, X., Peng, Y., Chen, L., and Du, S., Molecularly imprinted layer-coated silica nanoparticles toward highly selective separation of active diosgenin from Dioscorea nipponica Makino. Journal of Chromatography A, 2009. 1216(12): 2254-2262.
43. Lorenzo, R.A., Carro, A.M., Alvarez-Lorenzo, C., and Concheiro, A., To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs). International Journal of Molecular Sciences, 2011. 12(7): 4327-4347.
44. Fu, G.Q., Yu, H., and Zhu, J., Imprinting effect of protein-imprinted polymers composed of chitosan and polyacrylamide: A re-examination. Biomaterials, 2008. 29(13): 2138-2142.
45. Roy, A.K., Dhand, C., and Malhotra, B.D., Molecularly imprinted polyaniline film for ascorbic acid detection. Journal of Molecular Recognition, 2011. 24(4): 700-706.
46. Zheng, X., Zhou, X., Ji, X., Lin, R., and Lin, W., Simultaneous determination of ascorbic acid, dopamine and uric acid using poly (4-aminobutyric acid) modified glassy carbon electrode. Sensors and Actuators B: Chemical, 2013. 178: 359-365.
47. Zhang, X., Yu, S., He, W., Uyama, H., Xie, Q., Zhang, L., and Yang, F., Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid. Biosensors and Bioelectronics, 2014. 55: 446-451.
電子全文 電子全文(網際網路公開日期:20261109)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊