跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 06:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳思辰
研究生(外文):Wu, Szu-Chen
論文名稱:沸石咪唑骨架衍生奈米孔洞碳材於超級電容之應用
論文名稱(外文):Zeolitic Imidazolate Framework-derived nanoporous carbon materials for supercapacitor application
指導教授:陳三元陳三元引用關係彭政雄彭政雄引用關係
指導教授(外文):Chen, San-YuanPeng, Cheng-Hsiung
口試委員:陳三元彭政雄劉益銘王誠佑郭養國
口試委員(外文):Chen, San-YuanPeng, Cheng-HsiungLiu, Yih-MingWang, Cheng-YuKuo, Yang-Kuao
口試日期:2022-01-11
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:74
中文關鍵詞:超級電容器雜原子摻雜階級孔洞篩分效果沸石咪唑骨架-67
外文關鍵詞:supercapacitorsheteroatoms-dopinghierarchical poresieving effectzeolitic imidazolate framework
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
</p>超級電容器因為其快速充電/放電速率、高功率容量和強大的循環穩定性而有望成為移動設備、微型無人機和醫療植入設備供電系統。異質原子摻雜和階級多孔碳質材料是優異的超級電容電極候選材料,因為它們具有大能量密度、高電導率、大比表面積和有效的離子遷移動力學,可提供偽電容而不會損失其功率。沸石咪唑骨架-67的奈米多孔碳材由於其豐富的氮含量和令人難以置信的比表面積,是製備異質原子摻雜碳的理想前驅物。然而,在劇烈的碳化過程中會發生嚴重的聚集和氮含量的損失。</p>
<p>本論文分別以二維鈷鋁層狀雙氫氧化物(cobalt aluminum layered double hydroxide, CoAl-LDH)和三維蠶絲氣凝膠(silk fibroin, SF)支架為原位生長模板均勻生長ZIF-67後形成ZIF-67@CoAl-LDH 和Z@SF。酸蝕刻後,我們從ZIF-67@CoAl-LDH中獲得了鬆餅狀奈米孔洞碳材(Waffle-Like Nanoporous Carbon, WNPC),而C<sub>Z@SF</sub>則是通過 Z@SF 通過ZnCl<sub>2</sub>作為活性劑與碳原子形成微孔反而不阻塞活性碳化過程中的碳氫化合物。通過這些程序,我們能夠獲得WNPC和C<sub>Z@SF</sub>表現出高含量的氮和氧摻雜、增加比表面積並形成階級孔洞碳材產生篩分效應,促進電解質從中孔擴散到微孔。WNPC在1 A·g<sup>−1</sup>下呈現出比C<sub>Z@SF</sub> (256.7 F·g<sup>−1</sup>)和NPC (209.2 F·g<sup>−1</sup>) 更高的比電容300.7 F·g<sup>−1</sup>,以及在 20 A·g<sup>−1</sup> 時保持 (226.9 F·g<sup>−1</sup>, 72 %)的高電容,確保其在高電流超級電容器電極中的使用。最後,WNPC作為電極活性材料用於鈕扣電池CR2032和固態超級電容器。CR2032鈕扣電池在500 W·kg<sup>−1</sup>的功率下達到了27 W·h·kg<sup>−1</sup>的優異比能量密度,以及良好的循環穩定性(10,000次循環後電容保持率為85%)。最後,我們實現了將固態超級電容器與無線充電模組結合並植入到大鼠體內。這些結果表明,通過原位生長策略設計的雜原子和階級孔工程結構是用於超快供電的有前途的電極材料。</p>
</p>Supercapacitors (SCs) are promising for powering mobile devices, micro-drones and implantable medical devices due to their fast charge/discharge rate, high power capability and robust cycle stability. Heteroatoms-doped and hierarchical porous carbonaceous materials are great candidates and could provide pseudocapacitance without losing their power rate due to their high energy density, high electronic conductivity, large specific surface area, and efficient kinetics for ion migration. Nanoporous carbon derived from zeolitic imidazolate framework-67 (ZIF-67) is an ideal precursor for preparing heteroatom-doped carbons owing to their abundant nitrogen contents and incredible specific surface areas. However, severe aggregations and the loss of nitrogen occur during the harsh carbonization process.</p>
<p>In this dissertation, the 2D cobalt aluminum layered double hydroxide (CoAl-LDH) and 3D silk fibroin aerogel (SF) were employed as the <em>in-situ</em> growth templates to uniformly grow ZIF-67 on CoAl-LDH and SF aerogel scaffold, named after ZIF-67@CoAl-LDH and Z@SF, respectively. After acid etching, we obtained waffle-like nanoporous carbon (WNPC) from ZIF-67@CoAl-LDH, as well as C<sub>Z@SF</sub> obtained from Z@SF where ZnCl<sub>2</sub> was used as the activated agent to develop micropores. The WNPC and C<sub>Z@SF</sub> exhibited high contents of nitrogen and oxygen doping and enhanced specific surface area, as well as achieved a sieving effect by the hierarchical porous structure, which facilitates the diffusion of electrolytes from mesopores to micropores. The WNPC renders the highest specific capacitance of 300.7 F·g<sup>−1</sup> than C<sub>Z@SF</sub> (256.7 F·g<sup>−1</sup>) and NPC (209.2 F·g<sup>−1</sup>) at 1 A·g<sup>−1</sup>, and a high retention (72%) of capacitance at 20 A·g<sup>−1</sup>, ensuring its use at high-rate supercapacitor electrodes. Finally, we made a proof-of-concept validation by assembling the WNPC-based CR2032 symmetric cell and the WNPC-based solid-state supercapacitor. The 2V CR2032 cell reached a superior specific energy of 27 W·h·kg<sup>−1</sup> at a power of 500 W·kg<sup>−1</sup>, and a good cycle stability (85% capacitance retention after 10,000 cycles). The WNPC-based solid-state supercapacitor could be further charged to 2.7 V by 0.6 mA, and illuminated the green LED (550 nm) for 9 min. We achieved the SSC to connect with the wireless charging module and implant in a rat. These results suggest that the as-designed heteroatom-doped and hierarchical pore engineered structure by <em>in-situ</em> growth strategy are promising electrode materials for ultrafast powering.</p>
摘要 i
Abstract ii
誌謝 iv
Contents v
List of Figures vii
List of tables x
Chapter 1. Introduction 1
Chapter 2. Waffle-Like Nanoporous Carbons Combined with Enriched Mesopores and Highly Heteroatom-Doped Derived from Sandwiched ZIF-67@CoAl-LDH for High-Rate Supercapacitor 4
2.1. Introduction 4
2.2. Experimental section 6
2.2.1 Chemicals and reagents 6
2.2.1. Preparation of CoAl-LDH 7
2.2.2. Synthesis of ZIF-67 7
2.2.3. Preparation of waffle-Like nanoporous carbon (WNPC) and nanoporous carbon (NPC) 7
2.2.4. Materials Characterization 8
2.2.5. Electrochemical Measurements 8
2.3. Results and discussion 10
2.3.1. In-Situ Growth of ZIF-67 on CoAl-LDH Sheets 10
2.3.2. Formation and Characterizations of WNPC 15
2.3.3. Electrochemical analysis of WNPC and NPC by three electrodes 21
2.3 Summary 26
Chapter 3. Synergistic Effect of Cocoon Silk Chemistry and ZIF-67 to Hierarchical Interconnected Porous Carbon for High-rate Supercapacitors 27
3.1. Introduction 27
3.2. Experimental section 29
3.2.1. Chemicals and reagents 29
3.2.2. Extraction of silk fibroin (SF) 29
3.2.3. Ion seeding of SF with Co2+ ion 30
3.2.4. Synthesis of in-situ ZIF-67-loaded SF aerogel (Z@SF) 30
3.2.5. Preparation of the carbonized Z@SF aerogel 30
3.2.6. Materials Characterization 31
3.2.7. Electrochemical Measurements 31
3.3. Results and discussion 32
3.3.1. Binding chemistry between silk cocoon and Co ions 32
3.3.2. Formation and Characterizations of CZ@SF 36
3.3.3. Electrochemical analysis of CZ@SF by three electrodes 41
3.4. Summary 43
Chapter 4. The Waffle-like Nanoporous Carbon as Electrode for Symmetrical Supercapacitor 45
4.1. Introduction 45
4.2. Experiment methods 46
4.2.1. Chemical reagents and devices 46
4.2.2. Assemble full cell for CR2032 46
4.3. Results and discussion 47
4.3.1. Full cell performances of the WNPC for CR2032 47
4.3.2. The waffle-like nanoporous carbon for the solid-state supercapacitor 51
4.4. Summary 55
Chapter 5. Conclusion 56
Chapter 6. Perspective 57
Reference 58
Curriculum Vitae 73
Publications 74
1. González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews 2016, 58, 1189-1206, DOI: https://doi.org/10.1016/j.rser.2015.12.249.
2. Cai, T.; Xing, W.; Liu, Z.; Zeng, J.; Xue, Q.; Qiao, S.; Yan, Z. Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon 2015, 86, 235-244, DOI: https://doi.org/10.1016/j.carbon.2015.01.032.
3. Chen, X.; Wu, K.; Gao, B.; Xiao, Q.; Kong, J.; Xiong, Q.; Peng, X.; Zhang, X.; Fu, J. Three-Dimensional Activated Carbon Recycled from Rotten Potatoes for High-performance Supercapacitors. Waste and Biomass Valorization 2016, 7 (3), 551-557, DOI: 10.1007/s12649-015-9458-0.
4. Almasoudi, A.; Mokaya, R. Preparation and hydrogen storage capacity of templated and activated carbons nanocast from commercially available zeolitic imidazolate framework. Journal of Materials Chemistry 2012, 22 (1), 146-152, DOI: 10.1039/C1JM13314D.
5. Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and Electrolytes for Advanced Supercapacitors. Advanced Materials 2014, 26 (14), 2219-2251, DOI: https://doi.org/10.1002/adma.201304137.
6. Raza, W.; Ali, F.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent advancements in supercapacitor technology. Nano Energy 2018, 52, 441-473, DOI: https://doi.org/10.1016/j.nanoen.2018.08.013.
7. Liu, T.; Zhang, F.; Song, Y.; Li, Y. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. Journal of Materials Chemistry A 2017, 5 (34), 17705-17733, DOI: 10.1039/C7TA05646J.
8. Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science 2014, 7 (5), 1597-1614, DOI: 10.1039/C3EE44164D.
9. Salunkhe, R. R.; Kaneti, Y. V.; Yamauchi, Y. Metal–Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. ACS Nano 2017, 11 (6), 5293-5308, DOI: 10.1021/acsnano.7b02796.
10. Sassoye, C.; Laberty, C.; Le Khanh, H.; Cassaignon, S.; Boissière, C.; Antonietti, M.; Sanchez, C. Block-Copolymer-Templated Synthesis of Electroactive RuO2-Based Mesoporous Thin Films. Advanced Functional Materials 2009, 19 (12), 1922-1929, DOI: https://doi.org/10.1002/adfm.200801831.
11. Fan, Z.; Yan, J.; Wei, T.; Zhi, L.; Ning, G.; Li, T.; Wei, F. Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density. Advanced Functional Materials 2011, 21 (12), 2366-2375, DOI: https://doi.org/10.1002/adfm.201100058.
12. Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X. W. Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage. Advanced Materials 2012, 24 (38), 5166-5180, DOI: https://doi.org/10.1002/adma.201202146.
13. Ramya, R.; Sivasubramanian, R.; Sangaranarayanan, M. V. Conducting polymers-based electrochemical supercapacitors—Progress and prospects. Electrochimica Acta 2013, 101, 109-129, DOI: https://doi.org/10.1016/j.electacta.2012.09.116.
14. Liu, T.; Finn, L.; Yu, M.; Wang, H.; Zhai, T.; Lu, X.; Tong, Y.; Li, Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Letters 2014, 14 (5), 2522-2527, DOI: 10.1021/nl500255v.
15. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009, 38 (9), 2520-2531, DOI: 10.1039/B813846J.
16. Pech, D.; Brunet, M.; Taberna, P.-L.; Simon, P.; Fabre, N.; Mesnilgrente, F.; Conédéra, V.; Durou, H. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. Journal of Power Sources 2010, 195 (4), 1266-1269, DOI: https://doi.org/10.1016/j.jpowsour.2009.08.085.
17. Pushparaj, V. L.; Shaijumon, M. M.; Kumar, A.; Murugesan, S.; Ci, L.; Vajtai, R.; Linhardt, R. J.; Nalamasu, O.; Ajayan, P. M. Flexible energy storage devices based on nanocomposite paper. Proceedings of the National Academy of Sciences 2007, 104 (34), 13574, DOI: 10.1073/pnas.0706508104.
18. Lee, S. W.; Kim, B.-S.; Chen, S.; Shao-Horn, Y.; Hammond, P. T. Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications. Journal of the American Chemical Society 2009, 131 (2), 671-679, DOI: 10.1021/ja807059k.
19. Choi, B. G.; Hong, J.; Hong, W. H.; Hammond, P. T.; Park, H. Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors. ACS Nano 2011, 5 (9), 7205-7213, DOI: 10.1021/nn202020w.
20. Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Mohana Reddy, A. L.; Yu, J.; Vajtai, R.; Ajayan, P. M. Ultrathin Planar Graphene Supercapacitors. Nano Letters 2011, 11 (4), 1423-1427, DOI: 10.1021/nl200225j.
21. Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L.; Vajtai, R.; Zhang, Q.; Wei, B.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology 2011, 6 (8), 496-500, DOI: 10.1038/nnano.2011.110.
22. Wu, Z.-S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X.; Müllen, K. Three-Dimensional Nitrogen and Boron Co-doped Graphene for High-Performance All-Solid-State Supercapacitors. Advanced Materials 2012, 24 (37), 5130-5135, DOI: https://doi.org/10.1002/adma.201201948.
23. Deng, Y.; Xie, Y.; Zou, K.; Ji, X. Review on recent advances in nitrogen-doped carbons: preparations and applications in supercapacitors. Journal of Materials Chemistry A 2016, 4 (4), 1144-1173, DOI: 10.1039/C5TA08620E.
24. Winter, M.; Brodd, R. J. What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 2004, 104 (10), 4245-4270, DOI: 10.1021/cr020730k.
25. Wang, G.; Zhang, L.; Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 2012, 41 (2), 797-828, DOI: 10.1039/C1CS15060J.
26. Almeida, V. C.; Silva, R.; Acerce, M.; Junior, O. P.; Cazetta, A. L.; Martins, A. C.; Huang, X.; Chhowalla, M.; Asefa, T. N-doped ordered mesoporous carbons with improved charge storage capacity by tailoring N-dopant density with solvent-assisted synthesis. Journal of Materials Chemistry A 2014, 2 (36), 15181-15190, DOI: 10.1039/C4TA02236J.
27. Li, Y.; Roy, S.; Ben, T.; Xu, S.; Qiu, S. Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application. Physical Chemistry Chemical Physics 2014, 16 (25), 12909-12917, DOI: 10.1039/C4CP00550C.
28. Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. Journal of the American Chemical Society 2008, 130 (9), 2730-2731, DOI: 10.1021/ja7106178.
29. Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B. Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coordination Chemistry Reviews 2016, 307, 361-381, DOI: https://doi.org/10.1016/j.ccr.2015.09.002.
30. Salunkhe, R. R.; Kaneti, Y. V.; Kim, J.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for Metal–Organic Framework-Derived Nanoporous Carbons toward Supercapacitor Applications. Accounts of Chemical Research 2016, 49 (12), 2796-2806, DOI: 10.1021/acs.accounts.6b00460.
31. Simon, P.; Gogotsi, Y. Capacitive Energy Storage in Nanostructured Carbon–Electrolyte Systems. Accounts of Chemical Research 2013, 46 (5), 1094-1103, DOI: 10.1021/ar200306b.
32. Irimia-Vladu, M. “Green” electronics: biodegradable and biocompatible materials and devices for sustainable future. Chemical Society Reviews 2014, 43 (2), 588-610, DOI: 10.1039/C3CS60235D.
33. Kim, S. Y.; Kim, B.-H. Silica decorated on porous activated carbon nanofiber composites for high-performance supercapacitors. Journal of Power Sources 2016, 328, 219-227, DOI: https://doi.org/10.1016/j.jpowsour.2016.08.011.
34. Zhang, J.; Zhang, G.; Zhou, T.; Sun, S. Recent Developments of Planar Micro-Supercapacitors: Fabrication, Properties, and Applications. Advanced Functional Materials 2020, 30 (19), 1910000, DOI: https://doi.org/10.1002/adfm.201910000.
35. Li, L.; Peng, S.; Cheah, Y.; Teh, P.; Wang, J.; Wee, G.; Ko, Y.; Wong, C.; Srinivasan, M. Electrospun Porous NiCo2O4 Nanotubes as Advanced Electrodes for Electrochemical Capacitors. Chemistry – A European Journal 2013, 19 (19), 5892-5898, DOI: https://doi.org/10.1002/chem.201204153.
36. Zhu, J.; Xu, Z.; Lu, B. Ultrafine Au nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy 2014, 7, 114-123, DOI: https://doi.org/10.1016/j.nanoen.2014.04.010.
37. Senthilkumar, B.; Vijaya Sankar, K.; Kalai Selvan, R.; Danielle, M.; Manickam, M. Nano α-NiMoO4 as a new electrode for electrochemical supercapacitors. RSC Advances 2013, 3 (2), 352-357, DOI: 10.1039/C2RA22743F.
38. Guo, D.; Luo, Y.; Yu, X.; Li, Q.; Wang, T. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. Nano Energy 2014, 8, 174-182, DOI: https://doi.org/10.1016/j.nanoen.2014.06.002.
39. Wang, X.; Yang, C.; Jin, J.; Li, X.; Cheng, Q.; Wang, G. High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. Journal of Materials Chemistry A 2018, 6 (10), 4432-4442, DOI: 10.1039/C7TA11173H.
40. Ji, S.; Yang, J.; Cao, J.; Zhao, X.; Mohammed, M. A.; He, P.; Dryfe, R. A. W.; Kinloch, I. A. A Universal Electrolyte Formulation for the Electrodeposition of Pristine Carbon and Polypyrrole Composites for Supercapacitors. ACS Applied Materials & Interfaces 2020, 12 (11), 13386-13399, DOI: 10.1021/acsami.0c01216.
41. Du, Z.; Peng, Y.; Ma, Z.; Li, C.; Yang, J.; Qin, X.; Shao, G. Synthesis of nitrogen-doped carbon cellular foam with ultra-high rate capability for supercapacitors. RSC Advances 2015, 5 (14), 10296-10303, DOI: 10.1039/C4RA14395G.
42. Chen, L.-F.; Lu, Y.; Yu, L.; Lou, X. W. Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy & Environmental Science 2017, 10 (8), 1777-1783, DOI: 10.1039/C7EE00488E.
43. Tang, J.; Salunkhe, R. R.; Liu, J.; Torad, N. L.; Imura, M.; Furukawa, S.; Yamauchi, Y. Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. Journal of the American Chemical Society 2015, 137 (4), 1572-1580, DOI: 10.1021/ja511539a.
44. Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. Journal of Materials Chemistry A 2014, 2 (46), 19848-19854, DOI: 10.1039/C4TA04277H.
45. Torad, N. L.; Salunkhe, R. R.; Li, Y.; Hamoudi, H.; Imura, M.; Sakka, Y.; Hu, C.-C.; Yamauchi, Y. Electric Double-Layer Capacitors Based on Highly Graphitized Nanoporous Carbons Derived from ZIF-67. Chemistry – A European Journal 2014, 20 (26), 7895-7900, DOI: https://doi.org/10.1002/chem.201400089.
46. Yin, D.; Huang, G.; Sun, Q.; Li, Q.; Wang, X.; Yuan, D.; Wang, C.; Wang, L. RGO/Co3O4 Composites Prepared Using GO-MOFs as Precursor for Advanced Lithium-ion Batteries and Supercapacitors Electrodes. Electrochimica Acta 2016, 215, 410-419, DOI: https://doi.org/10.1016/j.electacta.2016.08.110.
47. Pachfule, P.; Biswal, B. P.; Banerjee, R. Control of Porosity by Using Isoreticular Zeolitic Imidazolate Frameworks (IRZIFs) as a Template for Porous Carbon Synthesis. Chemistry – A European Journal 2012, 18 (36), 11399-11408, DOI: https://doi.org/10.1002/chem.201200957.
48. Liu, Z.; Ma, R.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis, Anion Exchange, and Delamination of Co−Al Layered Double Hydroxide:  Assembly of the Exfoliated Nanosheet/Polyanion Composite Films and Magneto-Optical Studies. Journal of the American Chemical Society 2006, 128 (14), 4872-4880, DOI: 10.1021/ja0584471.
49. Guo, H.; Wang, M.; Zhao, L.; Youliwasi, N.; Liu, C. The effect of Co and N of porous carbon-based materials fabricated via sacrificial templates MOFs on improving DA and UA electrochemical detection. Microporous and Mesoporous Materials 2018, 263, 21-27, DOI: https://doi.org/10.1016/j.micromeso.2017.11.052.
50. Wan, X.; Wu, R.; Deng, J.; Nie, Y.; Chen, S.; Ding, W.; Huang, X.; Wei, Z. A metal–organic framework derived 3D hierarchical Co/N-doped carbon nanotube/nanoparticle composite as an active electrocatalyst for oxygen reduction in alkaline electrolyte. Journal of Materials Chemistry A 2018, 6 (8), 3386-3390, DOI: 10.1039/C7TA10022A.
51. Qiang, R.; Du, Y.; Chen, D.; Ma, W.; Wang, Y.; Xu, P.; Ma, J.; Zhao, H.; Han, X. Electromagnetic functionalized Co/C composites by in situ pyrolysis of metal-organic frameworks (ZIF-67). Journal of Alloys and Compounds 2016, 681, 384-393, DOI: https://doi.org/10.1016/j.jallcom.2016.04.225.
52. Zhou, B.; Ramirez, W. F. Kinetics and Modeling of Wet Etching of Aluminum Oxide by Warm Phosphoric Acid. Journal of The Electrochemical Society 1996, 143 (2), 619-623, DOI: 10.1149/1.1836489.
53. Ide, T.; Shimizu, M.; Suzuki, A.; Shen, X.-Q.; Okumura, H.; Nemoto, T. Advantages of AlN/GaN Metal Insulator Semiconductor Field Effect Transistor using Wet Chemical Etching with Hot Phosphoric Acid. Japanese Journal of Applied Physics 2001, 40 (Part 1, No. 8), 4785-4788, DOI: 10.1143/jjap.40.4785.
54. Shao, Y.; Li, J.; Chang, H.; Peng, Y.; Deng, Y. The outstanding performance of LDH-derived mixed oxide Mn/CoAlOx for Hg0 oxidation. Catalysis Science & Technology 2015, 5 (7), 3536-3544, DOI: 10.1039/C5CY00298B.
55. Lü, Y.; Wang, Y.; Li, H.; Lin, Y.; Jiang, Z.; Xie, Z.; Kuang, Q.; Zheng, L. MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces 2015, 7 (24), 13604-13611, DOI: 10.1021/acsami.5b03177.
56. Yin, Y.; Liu, X.; Wei, X.; Yu, R.; Shui, J. Porous CNTs/Co Composite Derived from Zeolitic Imidazolate Framework: A Lightweight, Ultrathin, and Highly Efficient Electromagnetic Wave Absorber. ACS Applied Materials & Interfaces 2016, 8 (50), 34686-34698, DOI: 10.1021/acsami.6b12178.
57. Han, M.; Yin, X.; Kong, L.; Li, M.; Duan, W.; Zhang, L.; Cheng, L. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Journal of Materials Chemistry A 2014, 2 (39), 16403-16409, DOI: 10.1039/C4TA03033H.
58. Shao, M.; Li, Q.; Wu, J.; Xie, B.; Zhang, S.; Qian, Y. Benzene-thermal route to carbon nanotubes at a moderate temperature. Carbon 2002, 40 (15), 2961-2963, DOI: https://doi.org/10.1016/S0008-6223(02)00207-5.
59. Yang, G.; Han, H.; Li, T.; Du, C. Synthesis of nitrogen-doped porous graphitic carbons using nano-CaCO3 as template, graphitization catalyst, and activating agent. Carbon 2012, 50 (10), 3753-3765, DOI: https://doi.org/10.1016/j.carbon.2012.03.050.
60. Yanilmaz, A.; Tomak, A.; Akbali, B.; Bacaksiz, C.; Ozceri, E.; Ari, O.; Senger, R. T.; Selamet, Y.; Zareie, H. M. Nitrogen doping for facile and effective modification of graphene surfaces. RSC Advances 2017, 7 (45), 28383-28392, DOI: 10.1039/C7RA03046K.
61. Zhou, J.; Shen, H.; Li, Z.; Zhang, S.; Zhao, Y.; Bi, X.; Wang, Y.; Cui, H.; Zhuo, S. Porous carbon materials with dual N, S-doping and uniform ultra-microporosity for high performance supercapacitors. Electrochimica Acta 2016, 209, 557-564, DOI: https://doi.org/10.1016/j.electacta.2016.05.127.
62. Wang, C.; Liu, T. Nori-based N, O, S, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor. Journal of Alloys and Compounds 2017, 696, 42-50, DOI: https://doi.org/10.1016/j.jallcom.2016.11.206.
63. Kale, V. S.; Hwang, M.; Chang, H.; Kang, J.; Chae, S. I.; Jeon, Y.; Yang, J.; Kim, J.; Ko, Y.-J.; Piao, Y.; Hyeon, T. Microporosity-Controlled Synthesis of Heteroatom Codoped Carbon Nanocages by Wrap-Bake-Sublime Approach for Flexible All-Solid-State-Supercapacitors. Advanced Functional Materials 2018, 28 (37), 1803786, DOI: https://doi.org/10.1002/adfm.201803786.
64. Rojas, F.; Kornhauser, I.; Felipe, C.; Esparza, J. M.; Cordero, S.; Domínguez, A.; Riccardo, J. L. Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation. Physical Chemistry Chemical Physics 2002, 4 (11), 2346-2355, DOI: 10.1039/B108785A.
65. Chen, H.; Chen, J.; Chen, D.; Wei, H.; Liu, P.; Wei, W.; Lin, H.; Han, S. Nitrogen- and oxygen-rich dual-decorated carbon materials with porosity for high-performance supercapacitors. Journal of Materials Science 2019, 54 (7), 5625-5640, DOI: 10.1007/s10853-018-2993-x.
66. Jiang, H.-L.; Liu, B.; Lan, Y.-Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. Journal of the American Chemical Society 2011, 133 (31), 11854-11857, DOI: 10.1021/ja203184k.
67. Wang, Q.; Xia, W.; Guo, W.; An, L.; Xia, D.; Zou, R. Functional Zeolitic-Imidazolate-Framework-Templated Porous Carbon Materials for CO2 Capture and Enhanced Capacitors. Chemistry – An Asian Journal 2013, 8 (8), 1879-1885, DOI: https://doi.org/10.1002/asia.201300147.
68. Chaikittisilp, W.; Hu, M.; Wang, H.; Huang, H.-S.; Fujita, T.; Wu, K. C. W.; Chen, L.-C.; Yamauchi, Y.; Ariga, K. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chemical Communications 2012, 48 (58), 7259-7261, DOI: 10.1039/C2CC33433J.
69. Amali, A. J.; Sun, J.-K.; Xu, Q. From assembled metal–organic framework nanoparticles to hierarchically porous carbon for electrochemical energy storage. Chemical Communications 2014, 50 (13), 1519-1522, DOI: 10.1039/C3CC48112C.
70. Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science 2006, 313 (5794), 1760-1763, DOI: 10.1126/science.1132195.
71. Zhang, H.; Zhao, M.; Yang, Y.; Lin, Y. S. Hydrolysis and condensation of ZIF-8 in water. Microporous and Mesoporous Materials 2019, 288, 109568, DOI: https://doi.org/10.1016/j.micromeso.2019.109568.
72. Li, J.; Han, K.; Wang, D.; Teng, Z.; Cao, Y.; Qi, J.; Li, M.; Wang, M. Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon 2020, 164, 42-50, DOI: https://doi.org/10.1016/j.carbon.2020.03.044.
73. Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent Advancement of Nanostructured Carbon for Energy Applications. Chemical Reviews 2015, 115 (11), 5159-5223, DOI: 10.1021/cr5006217.
74. Zheng, Y.; Zhao, W.; Jia, D.; Liu, Y.; Cui, L.; Wei, D.; Zheng, R.; Liu, J. Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chemical Engineering Journal 2020, 387, 124161, DOI: https://doi.org/10.1016/j.cej.2020.124161.
75. Yao, L.; Wu, Q.; Zhang, P.; Zhang, J.; Wang, D.; Li, Y.; Ren, X.; Mi, H.; Deng, L.; Zheng, Z. Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density. Advanced Materials 2018, 30 (11), 1706054, DOI: https://doi.org/10.1002/adma.201706054.
76. Dubal, D. P.; Chodankar, N. R.; Kim, D.-H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chemical Society Reviews 2018, 47 (6), 2065-2129, DOI: 10.1039/C7CS00505A.
77. Wang, Y.; Liu, R.; Tian, Y.; Sun, Z.; Huang, Z.; Wu, X.; Li, B. Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chemical Engineering Journal 2020, 384, 123263, DOI: https://doi.org/10.1016/j.cej.2019.123263.
78. Paraknowitsch, J. P.; Thomas, A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy & Environmental Science 2013, 6 (10), 2839-2855, DOI: 10.1039/C3EE41444B.
79. Li, Y.; Wang, G.; Wei, T.; Fan, Z.; Yan, P. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 2016, 19, 165-175, DOI: https://doi.org/10.1016/j.nanoen.2015.10.038.
80. Lota, G.; Lota, K.; Frackowiak, E. Nanotubes based composites rich in nitrogen for supercapacitor application. Electrochemistry Communications 2007, 9 (7), 1828-1832, DOI: https://doi.org/10.1016/j.elecom.2007.04.015.
81. Lee, Y.-H.; Chang, K.-H.; Hu, C.-C. Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. Journal of Power Sources 2013, 227, 300-308, DOI: https://doi.org/10.1016/j.jpowsour.2012.11.026.
82. Zheng, Y.; Deng, T.; Zhang, W.; Zheng, W. Optimizing the micropore-to-mesopore ratio of carbon-fiber-cloth creates record-high specific capacitance. Journal of Energy Chemistry 2020, 47, 210-216, DOI: https://doi.org/10.1016/j.jechem.2019.12.014.
83. Shang, L.; Yu, H.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Advanced Materials 2016, 28 (8), 1668-1674, DOI: https://doi.org/10.1002/adma.201505045.
84. Konwarh, R.; Gupta, P.; Mandal, B. B. Silk-microfluidics for advanced biotechnological applications: A progressive review. Biotechnology Advances 2016, 34 (5), 845-858, DOI: https://doi.org/10.1016/j.biotechadv.2016.05.001.
85. Mehrotra, S.; Chouhan, D.; Konwarh, R.; Kumar, M.; Jadi, P. K.; Mandal, B. B. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomaterials Science & Engineering 2019, 5 (5), 2054-2078, DOI: 10.1021/acsbiomaterials.8b01560.
86. Janani, G.; Kumar, M.; Chouhan, D.; Moses, J. C.; Gangrade, A.; Bhattacharjee, S.; Mandal, B. B. Insight into Silk-Based Biomaterials: From Physicochemical Attributes to Recent Biomedical Applications. ACS Applied Bio Materials 2019, 2 (12), 5460-5491, DOI: 10.1021/acsabm.9b00576.
87. Hou, J.; Cao, C.; Idrees, F.; Ma, X. Hierarchical Porous Nitrogen-Doped Carbon Nanosheets Derived from Silk for Ultrahigh-Capacity Battery Anodes and Supercapacitors. ACS Nano 2015, 9 (3), 2556-2564, DOI: 10.1021/nn506394r.
88. Cho, S. Y.; Yun, Y. S.; Lee, S.; Jang, D.; Park, K.-Y.; Kim, J. K.; Kim, B. H.; Kang, K.; Kaplan, D. L.; Jin, H.-J. Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein. Nature Communications 2015, 6 (1), 7145, DOI: 10.1038/ncomms8145.
89. Lammel, A. S.; Hu, X.; Park, S.-H.; Kaplan, D. L.; Scheibel, T. R. Controlling silk fibroin particle features for drug delivery. Biomaterials 2010, 31 (16), 4583-4591, DOI: https://doi.org/10.1016/j.biomaterials.2010.02.024.
90. Yucel, T.; Kojic, N.; Leisk, G. G.; Lo, T. J.; Kaplan, D. L. Non-equilibrium silk fibroin adhesives. Journal of Structural Biology 2010, 170 (2), 406-412, DOI: https://doi.org/10.1016/j.jsb.2009.12.012.
91. Koh, L.-D.; Cheng, Y.; Teng, C.-P.; Khin, Y.-W.; Loh, X.-J.; Tee, S.-Y.; Low, M.; Ye, E.; Yu, H.-D.; Zhang, Y.-W.; Han, M.-Y. Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science 2015, 46, 86-110, DOI: https://doi.org/10.1016/j.progpolymsci.2015.02.001.
92. Qian, J.; Sun, F.; Qin, L. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Materials Letters 2012, 82, 220-223, DOI: https://doi.org/10.1016/j.matlet.2012.05.077.
93. Zhou, Y.-X.; Chen, Y.-Z.; Cao, L.; Lu, J.; Jiang, H.-L. Conversion of a metal–organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters. Chemical Communications 2015, 51 (39), 8292-8295, DOI: 10.1039/C5CC01588J.
94. Li, W.; Zhang, A.; Jiang, X.; Chen, C.; Liu, Z.; Song, C.; Guo, X. Low Temperature CO2 Methanation: ZIF-67-Derived Co-Based Porous Carbon Catalysts with Controlled Crystal Morphology and Size. ACS Sustainable Chemistry & Engineering 2017, 5 (9), 7824-7831, DOI: 10.1021/acssuschemeng.7b01306.
95. Guan, B. Y.; Yu, L.; Lou, X. W. Formation of Single-Holed Cobalt/N-Doped Carbon Hollow Particles with Enhanced Electrocatalytic Activity toward Oxygen Reduction Reaction in Alkaline Media. Advanced Science 2017, 4 (10), 1700247, DOI: https://doi.org/10.1002/advs.201700247.
96. Ornelas, O.; Sieben, J. M.; Ruiz-Rosas, R.; Morallón, E.; Cazorla-Amorós, D.; Geng, J.; Soin, N.; Siores, E.; Johnson, B. F. G. On the origin of the high capacitance of nitrogen-containing carbon nanotubes in acidic and alkaline electrolytes. Chemical Communications 2014, 50 (77), 11343-11346, DOI: 10.1039/C4CC04876H.
97. Zhu, X.; Huang, X.; Anwer, S.; Wang, N.; Zhang, L. Nitrogen-Doped Porous Carbon Nanospheres Activated under Low ZnCl2 Aqueous System: An Electrode for Supercapacitor Applications. Langmuir 2020, 36 (31), 9284-9290, DOI: 10.1021/acs.langmuir.0c01670.
98. Hannan, M. A.; Wali, S. B.; Ker, P. J.; Rahman, M. S. A.; Mansor, M.; Ramachandaramurthy, V. K.; Muttaqi, K. M.; Mahlia, T. M. I.; Dong, Z. Y. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues. Journal of Energy Storage 2021, 42, 103023, DOI: https://doi.org/10.1016/j.est.2021.103023.
99. Lu, X.; Yu, M.; Wang, G.; Tong, Y.; Li, Y. Flexible solid-state supercapacitors: design, fabrication and applications. Energy & Environmental Science 2014, 7 (7), 2160-2181, DOI: 10.1039/C4EE00960F.
100. Qin, W.; Zhou, N.; Wu, C.; Xie, M.; Sun, H.; Guo, Y.; Pan, L. Mini-Review on the Redox Additives in Aqueous Electrolyte for High Performance Supercapacitors. ACS Omega 2020, 5 (8), 3801-3808, DOI: 10.1021/acsomega.9b04063.
101. Gou, Q.; Zhao, S.; Wang, J.; Li, M.; Xue, J. Recent Advances on Boosting the Cell Voltage of Aqueous Supercapacitors. Nano-Micro Letters 2020, 12 (1), 98, DOI: 10.1007/s40820-020-00430-4.
102. Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials 2009, 8 (8), 621-629, DOI: 10.1038/nmat2448.
103. Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances 2019, 1 (10), 3807-3835, DOI: 10.1039/C9NA00374F.
104. Wang, F.; Wang, X.; Chang, Z.; Wu, X.; Liu, X.; Fu, L.; Zhu, Y.; Wu, Y.; Huang, W. A Quasi-Solid-State Sodium-Ion Capacitor with High Energy Density. Advanced Materials 2015, 27 (43), 6962-6968, DOI: https://doi.org/10.1002/adma.201503097.
105. Vanhoestenberghe, A.; Donaldson, N. Corrosion of silicon integrated circuits and lifetime predictions in implantable electronic devices. Journal of Neural Engineering 2013, 10 (3), 031002, DOI: 10.1088/1741-2560/10/3/031002.
106. Kim, C. Y.; Ku, M. J.; Qazi, R.; Nam, H. J.; Park, J. W.; Nam, K. S.; Oh, S.; Kang, I.; Jang, J.-H.; Kim, W. Y.; Kim, J.-H.; Jeong, J.-W. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Nature Communications 2021, 12 (1), 535, DOI: 10.1038/s41467-020-20803-y.
電子全文 電子全文(網際網路公開日期:20270119)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top