跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 19:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭博瀚
研究生(外文):Hsiao, Po-Han
論文名稱:利用同步輻射廣角X光繞射研究 P(VDF-TrFE) 和 P(VDF-TrFE-CTFE) 同軸電紡複合奈米纖維的壓電性能
論文名稱(外文):Using In-situ Synchrotron X-ray Diffraction to Investigate Piezoelectrical Performance of Coaxial Electrospun Composite Nanofibers of P(VDF-TrFE) and P(VDF-TrFE-CTFE)
指導教授:黃爾文
指導教授(外文):Huang, E-Wen
口試委員:劉典謨柯文清黃逸仁黃爾文
口試委員(外文):Liu, Dean-MoKo, Wen-ChingHuang, Yi-JenHuang, E-Wen
口試日期:2022-07-13
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:66
中文關鍵詞:PVDF共聚物電活性聚合物同軸靜電紡絲廣角X光繞射壓電性質
外文關鍵詞:PVDF-basedElectroactive Polymercoaxial electrospinningWide Angle X-ray DiffractionPiezoelectric properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
P(VDF-TrFE)聚(偏二氟乙烯-三氟乙烯)與P(VDF-TrFE-CTFE)聚(偏二氟乙烯-三氟乙烯-氯三氟乙烯)是常見的電活性高分子,分別具有較高的楊氏模數與較高的介電常數。利用同軸靜電紡絲技術,結合兩種聚合物,以獲得更好的互補特性。在本研究中,我們利用國家同步輻射中心台灣光子源(TLS)01C2實驗站進行即時性廣角X光繞射(in-situ WAXD)量測,研究壓電特性(正壓電和逆壓電效應)及施加電壓對材料晶格結構的影響。在不同頻率下,測量同軸殼/核複合電紡奈米纖維所得到的壓電響應。發現同軸殼/核複合電紡奈米纖維在幾個特定頻率下,表現出比單軸電紡製造的P(VDF-TrFE)和P(VDF-TrFE-CTFE)還要更好的壓電響應。
P(VDF-TrFE) poly(vinylidene fluoride-trifluoroethylene) and P(VDF-TrFE-CTFE) poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) are common electroactive polymers which have higher Young's modulus and higher dielectric constant, respectively. I applied coaxial electrospinning to combine these two polymers to develop the mixed polymers to tune their properties. My thesis research focuses on exploring piezoelectric properties, which are mainly direct and inverse piezoelectric effect, using the instruments of the National Synchrotron Radiation Research Center TLS01C2 station. I conducted in-situ Wide-angle X-ray Diffraction (WAXD) to simultaneously measure the changes in the microstructure, such as the lattice structure of the material, subjected to the applied voltage. Besides measuring the microstructure, I used the piezoelectric measurement equipment to measure the performance of piezoelectric response at the fixed force, which was 1 Newton, at different frequencies. I found that the piezoelectric properties of the coaxial core/shell composite electrospun nanofibers exhibited better piezoelectric responses than the pristine P(VDF-TrFE-CTFE) and P(VDF-TrFE) fabricated via the uniaxial electrospinning method at several specific frequencies.
誌謝 i
中文摘要 ii
英文摘要 iii
1 目錄 iv
2 圖目錄 vii
3 表目錄 x
1 第一章 前言 1
2 第二章 文獻回顧 3
2.1 壓電材料之發展 3
2.2 壓電效應 5
2.2.1 正壓電效應 5
2.2.2 逆壓電效應 6
2.2.3 壓電係數 7
2.3 電活性聚合物(Electroactive Polymer, EAP) 7
2.3.1 電活性聚合物之種類 7
2.3.2 電活性聚合物之性能 8
2.4 聚偏二氟乙烯(PVDF)共聚物之介紹 9
2.5 靜電紡絲製程介紹 12
2.5.1 靜電紡絲之特點 13
2.5.2 靜電紡絲之應用-同軸靜電紡絲 13
2.6 同步輻射X光散射實驗 14
2.6.1 X光繞射介紹 14
2.6.2 同步輻射光源介紹 15
2.6.3 廣角X光繞射介紹(Wide Angle X-ray Diffraction, WAXD) 16
3 第三章 實驗方法與儀器 17
3.1 實驗流程 17
3.2 實驗材料 17
3.3 樣品製備 18
3.3.1 單軸電紡製程 18
3.3.2 同軸電紡製程 19
3.3.3 壓電傳感器製程 20
3.4 微結構觀察 21
3.4.1 廣角X射線繞射儀 (Wide Angle X-ray Diffraction, WAXD) 21
3.4.2 即時性量測 21
3.5 壓電量測 22
3.6 纖維形貌觀察 24
3.7 薄膜厚度量測 24
3.8 d33量測系統(d33 meter) 25
4 第四章 實驗結果 26
4.1 表面微觀結構觀察 26
4.2 廣角X光繞射(WAXD)繞射峰分析 30
4.2.1 繞射位置(2 theta position)分析 32
4.2.2 晶格常數(Lattice constant)分析 34
4.2.3 晶格應變(Lattice strain)之分析 38
4.3 樣品厚度量測 39
4.4 單一樣品固定頻率下的壓電響應 41
4.5 單一樣品不同頻率下的壓電響應 42
4.6 四種樣品的壓電響應 43
5 第五章 結果討論 45
5.1 電紡製程之纖維異向性的有無 45
5.2 晶格應變之變化趨勢 46
5.3 四種樣品之晶格應變b比較 48
5.4 微觀與巨觀的逆壓電性質 50
5.5 四種樣品的壓電響應比較 51
6 第六章 結論 55
7 第七章 建議未來工作 56
8 第八章 參考文獻 57
9 第九章 附錄 60
9.1 口試委員的Q & A 60
9.2 簡歷 63
9.3 參加年會海報 64
[1] S. M. S. Rana et al., "Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances," ACS Applied Materials & Interfaces, vol. 13, no. 4, pp. 4955-4967, 2021/02/03 2021, doi: 10.1021/acsami.0c17512.
[2] J. M. Wu, C. C. Lee, and Y. H. Lin, "High sensitivity wrist-worn pulse active sensor made from tellurium dioxide microwires," Nano Energy, vol. 14, pp. 102-110, 2015/05/01/ 2015, doi: https://doi.org/10.1016/j.nanoen.2015.02.009.
[3] S. Zhang, B. Zhang, J. Zhang, and K. Ren, "Enhanced Piezoelectric Performance of Various Electrospun PVDF Nanofibers and Related Self-Powered Device Applications," ACS Applied Materials & Interfaces, vol. 13, no. 27, pp. 32242-32250, 2021/07/14 2021, doi: 10.1021/acsami.1c07995.
[4] 施子賢 and 張國明, "牙齒咬合力之PVDF壓電薄膜感測器研究," 2010, no. 第4屆: 遠東科技大學電機工程系, pp. 205-210, doi: 10.30176/isc.201005.0205.
[5] K. K. Sappati and S. Bhadra, "Piezoelectric Polymer and Paper Substrates: A Review," Sensors, vol. 18, no. 11, p. 3605, 2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/11/3605.
[6] A. Safari and E. K. Akdogan, Piezoelectric and acoustic materials for transducer applications. Springer Science & Business Media, 2008.
[7] 電子陶瓷: 壓電陶瓷. 全欣, 1994.
[8] S. Mishra, L. Unnikrishnan, S. K. Nayak, and S. Mohanty, "Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review," Macromolecular Materials and Engineering, vol. 304, no. 1, p. 1800463, 2019, doi: https://doi.org/10.1002/mame.201800463.
[9] Y. Bar-Cohen, "Artificial muscles using electroactive polymers (EAP): capabilities, challenges and potential," 2005.
[10] A. Ahmed et al., "Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced β-phase for piezoelectric response," Journal of Materials Science: Materials in Electronics, vol. 33, no. 7, pp. 3965-3981, 2022/03/01 2022, doi: 10.1007/s10854-021-07590-y.
[11] C. Wan and C. R. Bowen, "Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure," Journal of Materials Chemistry A, 10.1039/C6TA09590A vol. 5, no. 7, pp. 3091-3128, 2017, doi: 10.1039/C6TA09590A.
[12] S. Wang et al., "Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor," Composites Science and Technology, vol. 202, p. 108600, 2021/01/20/ 2021, doi: https://doi.org/10.1016/j.compscitech.2020.108600.
[13] J. Li et al., "Tuning phase transition and ferroelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) via grafting with desired poly(methacrylic ester)s as side chains," Journal of Materials Chemistry C, 10.1039/C2TC00431C vol. 1, no. 6, pp. 1111-1121, 2013, doi: 10.1039/C2TC00431C.
[14] M. Nalbandian, "Development and Optimization of Chemically-Active Electrospun Nanofibers for Treatment of Impaired Water Sources," 2014.
[15] D. Han and A. J. Steckl, "Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications," ChemPlusChem, vol. 84, no. 10, pp. 1453-1497, 2019, doi: https://doi.org/10.1002/cplu.201900281.
[16] D. Li, G. Fei, H. Xia, P. Spencer, and P. Coates, "Micro-contact reconstruction of adjacent carbon nanotubes in polymer matrix through annealing-Induced relaxation of interfacial residual stress and strain," Journal of Applied Polymer Science, vol. 132, 05/01 2015, doi: 10.1002/app.42416.
[17] 林宮玄, "淺談同步輻射光源應用," 全華圖書物理專刊, no. 10, 2015.
[18] T.-N. Lam et al., "Tunable Mechanical and Electrical Properties of Coaxial Electrospun Composite Nanofibers of P(VDF-TrFE) and P(VDF-TrFE-CTFE)," International Journal of Molecular Sciences, vol. 22, no. 9, p. 4639, 2021. [Online]. Available: https://www.mdpi.com/1422-0067/22/9/4639.
[19] Y. Jiang et al., "Aligned P(VDF-TrFE) Nanofibers for Enhanced Piezoelectric Directional Strain Sensing," Polymers, vol. 10, no. 4, p. 364, 2018. [Online]. Available: https://www.mdpi.com/2073-4360/10/4/364.
[20] H. R. Rizvi, N. D’Souza, B. Ayre, and D. Ramesh, "Bioinspired cellular sheath-core electrospun non-woven mesh," Emergent Materials, vol. 2, no. 2, pp. 127-140, 2019/06/01 2019, doi: 10.1007/s42247-019-00043-7.
[21] S. M. Kargar and G. Hao, "An Atlas of Piezoelectric Energy Harvesters in Oceanic Applications," Sensors, vol. 22, no. 5, p. 1949, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/5/1949.
[22] M. Kim, V. K. Kaliannagounder, A. R. Unnithan, C. H. Park, C. S. Kim, and A. Ramachandra Kurup Sasikala, "Development of In-Situ Poled Nanofiber Based Flexible Piezoelectric Nanogenerators for Self-Powered Motion Monitoring," Applied Sciences, vol. 10, no. 10, p. 3493, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/10/3493.
[23] G. Gutiérrez-Sánchez, J. Hernando-García, V. Ruiz-Diez, O. Dura, M. A. López de la Torre, and J. L. Sánchez-Rojas, Comparative assessment of PVDF and PVDF-TrFE piezoelectric polymers for flexible actuators applications (SPIE Microtechnologies). SPIE, 2017.
[24] Y. J. Huang et al., "In-Situ Synchrotron SAXS and WAXS Investigation on the Deformation of Single and Coaxial Electrospun P(VDF-TrFE)-Based Nanofibers," Int J Mol Sci, vol. 22, no. 23, Nov 24 2021, doi: 10.3390/ijms222312669.
[25] N. R. Alluri, B. Saravanakumar, and S.-J. Kim, "Flexible, Hybrid Piezoelectric Film (BaTi(1–x)ZrxO3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor," ACS Applied Materials & Interfaces, vol. 7, no. 18, pp. 9831-9840, 2015/05/13 2015, doi: 10.1021/acsami.5b01760.
[26] A. Pramanick et al., "Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films," AIP Advances, vol. 8, no. 4, p. 045204, 2018, doi: 10.1063/1.5014992.
[27] A. A. Khan et al., "Superior transverse piezoelectricity in organic-inorganic hybrid perovskite nanorods for mechanical energy harvesting," Nano Energy, vol. 86, p. 106039, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.nanoen.2021.106039.
[28] F. Bargain, D. Thuau, G. Hadziioannou, F. Domingues Dos Santos, and S. Tencé-Girault, "Phase diagram of poly(VDF-ter-TrFE-ter-CTFE) copolymers: Relationship between crystalline structure and material properties," Polymer, vol. 213, p. 123203, 2021/01/20/ 2021, doi: https://doi.org/10.1016/j.polymer.2020.123203.
[29] W.-C. Ko et al., "Using in-situ synchrotron x-ray diffraction to investigate phase transformation and lattice relaxation of a three-way piezo-phototronic soft material," Semiconductor Science and Technology, vol. 32, no. 7, p. 074005, 2017/06/30 2017, doi: 10.1088/1361-6641/aa6fc5.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top