|
[1] S. M. S. Rana et al., "Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances," ACS Applied Materials & Interfaces, vol. 13, no. 4, pp. 4955-4967, 2021/02/03 2021, doi: 10.1021/acsami.0c17512. [2] J. M. Wu, C. C. Lee, and Y. H. Lin, "High sensitivity wrist-worn pulse active sensor made from tellurium dioxide microwires," Nano Energy, vol. 14, pp. 102-110, 2015/05/01/ 2015, doi: https://doi.org/10.1016/j.nanoen.2015.02.009. [3] S. Zhang, B. Zhang, J. Zhang, and K. Ren, "Enhanced Piezoelectric Performance of Various Electrospun PVDF Nanofibers and Related Self-Powered Device Applications," ACS Applied Materials & Interfaces, vol. 13, no. 27, pp. 32242-32250, 2021/07/14 2021, doi: 10.1021/acsami.1c07995. [4] 施子賢 and 張國明, "牙齒咬合力之PVDF壓電薄膜感測器研究," 2010, no. 第4屆: 遠東科技大學電機工程系, pp. 205-210, doi: 10.30176/isc.201005.0205. [5] K. K. Sappati and S. Bhadra, "Piezoelectric Polymer and Paper Substrates: A Review," Sensors, vol. 18, no. 11, p. 3605, 2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/11/3605. [6] A. Safari and E. K. Akdogan, Piezoelectric and acoustic materials for transducer applications. Springer Science & Business Media, 2008. [7] 電子陶瓷: 壓電陶瓷. 全欣, 1994. [8] S. Mishra, L. Unnikrishnan, S. K. Nayak, and S. Mohanty, "Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review," Macromolecular Materials and Engineering, vol. 304, no. 1, p. 1800463, 2019, doi: https://doi.org/10.1002/mame.201800463. [9] Y. Bar-Cohen, "Artificial muscles using electroactive polymers (EAP): capabilities, challenges and potential," 2005. [10] A. Ahmed et al., "Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced β-phase for piezoelectric response," Journal of Materials Science: Materials in Electronics, vol. 33, no. 7, pp. 3965-3981, 2022/03/01 2022, doi: 10.1007/s10854-021-07590-y. [11] C. Wan and C. R. Bowen, "Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure," Journal of Materials Chemistry A, 10.1039/C6TA09590A vol. 5, no. 7, pp. 3091-3128, 2017, doi: 10.1039/C6TA09590A. [12] S. Wang et al., "Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor," Composites Science and Technology, vol. 202, p. 108600, 2021/01/20/ 2021, doi: https://doi.org/10.1016/j.compscitech.2020.108600. [13] J. Li et al., "Tuning phase transition and ferroelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) via grafting with desired poly(methacrylic ester)s as side chains," Journal of Materials Chemistry C, 10.1039/C2TC00431C vol. 1, no. 6, pp. 1111-1121, 2013, doi: 10.1039/C2TC00431C. [14] M. Nalbandian, "Development and Optimization of Chemically-Active Electrospun Nanofibers for Treatment of Impaired Water Sources," 2014. [15] D. Han and A. J. Steckl, "Coaxial Electrospinning Formation of Complex Polymer Fibers and their Applications," ChemPlusChem, vol. 84, no. 10, pp. 1453-1497, 2019, doi: https://doi.org/10.1002/cplu.201900281. [16] D. Li, G. Fei, H. Xia, P. Spencer, and P. Coates, "Micro-contact reconstruction of adjacent carbon nanotubes in polymer matrix through annealing-Induced relaxation of interfacial residual stress and strain," Journal of Applied Polymer Science, vol. 132, 05/01 2015, doi: 10.1002/app.42416. [17] 林宮玄, "淺談同步輻射光源應用," 全華圖書物理專刊, no. 10, 2015. [18] T.-N. Lam et al., "Tunable Mechanical and Electrical Properties of Coaxial Electrospun Composite Nanofibers of P(VDF-TrFE) and P(VDF-TrFE-CTFE)," International Journal of Molecular Sciences, vol. 22, no. 9, p. 4639, 2021. [Online]. Available: https://www.mdpi.com/1422-0067/22/9/4639. [19] Y. Jiang et al., "Aligned P(VDF-TrFE) Nanofibers for Enhanced Piezoelectric Directional Strain Sensing," Polymers, vol. 10, no. 4, p. 364, 2018. [Online]. Available: https://www.mdpi.com/2073-4360/10/4/364. [20] H. R. Rizvi, N. D’Souza, B. Ayre, and D. Ramesh, "Bioinspired cellular sheath-core electrospun non-woven mesh," Emergent Materials, vol. 2, no. 2, pp. 127-140, 2019/06/01 2019, doi: 10.1007/s42247-019-00043-7. [21] S. M. Kargar and G. Hao, "An Atlas of Piezoelectric Energy Harvesters in Oceanic Applications," Sensors, vol. 22, no. 5, p. 1949, 2022. [Online]. Available: https://www.mdpi.com/1424-8220/22/5/1949. [22] M. Kim, V. K. Kaliannagounder, A. R. Unnithan, C. H. Park, C. S. Kim, and A. Ramachandra Kurup Sasikala, "Development of In-Situ Poled Nanofiber Based Flexible Piezoelectric Nanogenerators for Self-Powered Motion Monitoring," Applied Sciences, vol. 10, no. 10, p. 3493, 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/10/3493. [23] G. Gutiérrez-Sánchez, J. Hernando-García, V. Ruiz-Diez, O. Dura, M. A. López de la Torre, and J. L. Sánchez-Rojas, Comparative assessment of PVDF and PVDF-TrFE piezoelectric polymers for flexible actuators applications (SPIE Microtechnologies). SPIE, 2017. [24] Y. J. Huang et al., "In-Situ Synchrotron SAXS and WAXS Investigation on the Deformation of Single and Coaxial Electrospun P(VDF-TrFE)-Based Nanofibers," Int J Mol Sci, vol. 22, no. 23, Nov 24 2021, doi: 10.3390/ijms222312669. [25] N. R. Alluri, B. Saravanakumar, and S.-J. Kim, "Flexible, Hybrid Piezoelectric Film (BaTi(1–x)ZrxO3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor," ACS Applied Materials & Interfaces, vol. 7, no. 18, pp. 9831-9840, 2015/05/13 2015, doi: 10.1021/acsami.5b01760. [26] A. Pramanick et al., "Origin of dielectric relaxor behavior in PVDF-based copolymer and terpolymer films," AIP Advances, vol. 8, no. 4, p. 045204, 2018, doi: 10.1063/1.5014992. [27] A. A. Khan et al., "Superior transverse piezoelectricity in organic-inorganic hybrid perovskite nanorods for mechanical energy harvesting," Nano Energy, vol. 86, p. 106039, 2021/08/01/ 2021, doi: https://doi.org/10.1016/j.nanoen.2021.106039. [28] F. Bargain, D. Thuau, G. Hadziioannou, F. Domingues Dos Santos, and S. Tencé-Girault, "Phase diagram of poly(VDF-ter-TrFE-ter-CTFE) copolymers: Relationship between crystalline structure and material properties," Polymer, vol. 213, p. 123203, 2021/01/20/ 2021, doi: https://doi.org/10.1016/j.polymer.2020.123203. [29] W.-C. Ko et al., "Using in-situ synchrotron x-ray diffraction to investigate phase transformation and lattice relaxation of a three-way piezo-phototronic soft material," Semiconductor Science and Technology, vol. 32, no. 7, p. 074005, 2017/06/30 2017, doi: 10.1088/1361-6641/aa6fc5.
|