跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 08:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王依蓉
研究生(外文):Wang, I-Jung
論文名稱:碲、銻摻雜黑磷單晶之合成、抗氧化性及其室溫氣體感測應用
論文名稱(外文):Synthesis of Te and Sb Doped Black Phosphorus Single Crystals, Oxidation-Resistance and Room-Temperature Gas Sensing Applications.
指導教授:陳軍華陳軍華引用關係
指導教授(外文):Chen, Chun-Hua
口試委員:張立陳軍華潘扶民黃華宗
口試委員(外文):Chang, LiChen, Chun-HuaPan, Fu-MingWhang, Wha-Tzong
口試日期:2022-08-31
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:92
中文關鍵詞:黑磷磷烯摻雜抗降解氣體感測器
外文關鍵詞:black phosphorusphosphorenedopeanti-degradationgas sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 前言 1
第二章 文獻回顧 2
2.1 黑磷 2
2.1.1 黑磷背景 2
2.1.2 高壓合成法 3
2.1.3 低壓合成法 3
2.2 黑磷之抗氧化改質 6
2.2.1 氧化機制 6
2.2.2 表面改質 6
2.2.3 摻雜改質 19
2.2.4 黑磷之氣體感測器 23
2.3 氣體感測器 25
2.3.1 氣體感測器背景 25
2.3.2 氣體感測器之特性 26
2.3.3 半導體氣體感測器之機制 27
2.4 影響氣體感測效能之因素 29
2.4.1 微結構 29
2.4.2 濕度 32
2.4.3 溫度 33
2.4.4 表面修飾 34
2.5 研究動機及目的 35
第三章 實驗方法與步驟 36
3.1 實驗設備 36
3.2 實驗藥品 37
3.3 實驗方法與步驟 37
3.3.1 BP、Te-BP 及 Sb-BP 摻雜之合成 38
3.3.2 BPNSs、Te-BPNSs 及 Sb-BPNSs 之合成 39
3.4 奈米結構之分析 39
3.4.1 X 光繞射分析儀(XRD) 39
3.4.2 場發掃描式電子顯微鏡(FESEM) 39
3.4.3 拉曼光譜儀(Raman spectrum) 40
3.4.4 X 光射線光電子能譜(XPS) 40
3.4.5 掃描式探針顯微鏡(AFM) 40
3.4.6 光學顯微鏡(OM) 40
3.4.7 穿透式電子顯微鏡(TEM) 41
3.5 氣體感測之分析 41
3.5.1 氣體感測試片之製備方式 41
3.5.2 氣體感測性質之量測 41
第四章 結果與討論 42
4.1塊狀 BP、Te-BP、Sb-BP 結構分析 42
4.1.1 不同反應溫度對 BP、Te-BP、Sb-BP 之影響 42
4.1.2 不同摻雜濃度對 BP、Te-BP、Sb-BP 之影響 44
4.2 BPNSs、Te-BPNSs、Sb-BPNSs 構造及形貌分析 50
4.3 Te-BPNSs 及 Sb-BPNSs 抗氧化效能分析 61
4.4 摻雜Te、Sb對於氣體感測之影響 69
4.4.1 BPNSs、Te-BPNSs、Sb-BPNSs 選擇性及其響應時間 69
4.4.2 BPNSs、Te-BPNSs、Sb-BPNSs 應用於氣體感測之環境穩定性分析 73
第五章 結論 76
參考文獻 77
[1] K.S. Novoselov, et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
[2] G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Materials Science and Engineering: B, 2007. 139(1): p. 1-23.
[3] A.C. Ferrari, et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015. 7(11): p. 4598-4810.
[4] X. Zhang, et al., 2D materials beyond graphene for high‐performance energy storage applications. Advanced Energy Materials, 2016. 6(23): p. 1600671.
[5] H. Zhang, Ultrathin two-dimensional nanomaterials. ACS nano, 2015. 9(10): p. 9451-9469.
[6] C.N.R. Rao, H.S.S. Ramakrishna Matte, and U. Maitra, Graphen‐analoge anorganische Schichtmaterialien. Angewandte Chemie, 2013. 125(50): p. 13400-13424.
[7] K. Shehzad, et al., Three-dimensional macro-structures of two-dimensional nanomaterials. Chemical Society Reviews, 2016. 45(20): p. 5541-5588.
[8] K.S. Chen, et al., Emerging opportunities for two-dimensional materials in lithium-ion batteries. ACS Energy Letters, 2017. 2(9): p. 2026-2034.
[9] R. Dong, T. Zhang, and X. Feng, Interface-assisted synthesis of 2D materials: trend and challenges. Chemical reviews, 2018. 118(13): p. 6189-6235.
[10] H. Jin, et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chemical reviews, 2018. 118(13): p. 6337-6408.
[11] M. Zeng, et al., Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chemical reviews, 2018. 118(13): p. 6236-6296.
[12] M. Naguib and Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction. Accounts of chemical research, 2015. 48(1): p. 128-135.
[13] Y. Sun, et al., Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry. Accounts of chemical research, 2015. 48(1): p. 3-12.
[14] M. Long, et al., Progress, challenges, and opportunities for 2D material based photodetectors. Advanced Functional Materials, 2019. 29(19): p. 1803807.
[15] C. Tan, et al., Recent advances in ultrathin two-dimensional nanomaterials. Chemical reviews, 2017. 117(9): p. 6225-6331.
[16] P. Zhang, et al., Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018. 47(19): p. 7426-7451.
[17] Y. Zhao, et al., Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chemical Society Reviews, 2019. 48(7): p. 1972-2010.
[18] X. Xia, et al., Three-dimensional graphene and their integrated electrodes. Nano Today, 2014. 9(6): p. 785-807.
[19] X. Cui, et al., Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 2011. 3(5): p. 2118-2126.
[20] Y. Lin, T.V. Williams, and J.W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets. The Journal of Physical Chemistry Letters, 2010. 1(1): p. 277-283.
[21] X.F. Jiang, et al., Recent progress on fabrications and applications of boron nitride nanomaterials: a review. Journal of Materials Science & Technology, 2015. 31(6): p. 589-598.
[22] M. Chhowalla, et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 2013. 5(4): p. 263-275.
[23] C. Tan and H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 2015. 44(9): p. 2713-2731.
[24] H. Wang, et al., Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2015. 44(9): p. 2664-2680.
[25] X. Duan, et al., Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chemical Society Reviews, 2015. 44(24): p. 8859-8876.
[26] H. Liu, et al., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Advanced Materials, 2018. 30(32): p. 1800295.
[27] Y. Wang, et al., Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Advanced Science, 2018. 5(8): p. 1800064.
[28] Z. Zhao, Y. Sun, and F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 2015. 7(1): p. 15-37.
[29] J. Liu, H. Wang, and M. Antonietti, Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chemical Society Reviews, 2016. 45(8): p. 2308-2326.
[30] X. Feng and A.D. Schlüter, Makroskopische kristalline 2D‐Polymere. Angewandte Chemie, 2018. 130(42): p. 13942-13959.
[31] M.P. Browne, Z. Sofer, and M. Pumera, Layered and two dimensional metal oxides for electrochemical energy conversion. Energy & Environmental Science, 2019. 12(1): p. 41-58.
[32] B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017. 2(2): p. 1-17.
[33] J. Pang, et al., Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019. 48(1): p. 72-133.
[34] S. Balendhran, et al., Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small, 2015. 11(6): p. 640-652.
[35] K.S. Novoselov, et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
[36] M. Batmunkh, M. Bat‐Erdene, and J.G. Shapter, Phosphorene and phosphorene‐based materials–prospects for future applications. Advanced Materials, 2016. 28(39): p. 8586-8617.
[37] H. Liu, et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS nano, 2014. 8(4): p. 4033-4041.
[38] Y. Du, et al., Ab initio studies on atomic and electronic structures of black phosphorus. Journal of Applied Physics, 2010. 107(9): p. 093718.
[39] N. Mao, et al., Optical Anisotropy of Black Phosphorus in the Visible Regime. Journal of the American Chemical Society, 2016. 138(1): p. 300-305.
[40] J. Tao, et al., Mechanical and electrical anisotropy of few-layer black phosphorus. ACS nano, 2015. 9(11): p. 11362-11370.
[41] X. Ling, et al., Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Letters, 2016. 16(4): p. 2260-2267.
[42] Q. Wei and X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 2014. 104(25): p. 251915.
[43] G. Qin and M. Hu, Thermal transport in phosphorene. Small, 2018. 14(12): p. 1702465.
[44] S. Huang, et al., Strain-tunable van der Waals interactions in few-layer black phosphorus. Nature communications, 2019. 10(1): p. 1-7.
[45] B. Smith, et al., Temperature and thickness dependences of the anisotropic in‐plane thermal conductivity of black phosphorus. Advanced Materials, 2017. 29(5): p. 1603756.
[46] M. Li, et al., Anisotropic thermal boundary resistance across 2D black phosphorus: experiment and atomistic modeling of interfacial energy transport. Advanced Materials, 2019. 31(33): p. 1901021.
[47] L. Li, et al., Black phosphorus field-effect transistors. Nature Nanotechnology, 2014. 9(5): p. 372-377.
[48] W. Tao, et al., Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Advanced Materials, 2017. 29(1): p. 1603276.
[49] R. Kurapati, et al., Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Advanced Materials, 2016. 28(29): p. 6052-6074.
[50] M. Qiu, et al., Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale, 2017. 9(36): p. 13384-13403.
[51] J. Pang, et al., Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials, 2018. 8(8): p. 1702093.
[52] H. Wang, et al., Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. Journal of the American Chemical Society, 2018. 140(9): p. 3474-3480.
[53] B. Li, et al., Black phosphorus, a rising star 2D nanomaterial in the post‐graphene era: synthesis, properties, modifications, and photocatalysis applications. Small, 2019. 15(8): p. 1804565.
[54] J. Sun, et al., Entrapment of polysulfides by a black‐phosphorus‐modified separator for lithium–sulfur batteries. Advanced materials, 2016. 28(44): p. 9797-9803.
[55] F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature communications, 2014. 5(1): p. 1-6.
[56] N. Youngblood, et al., Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015. 9(4): p. 247-252.
[57] S.C. Dhanabalan, et al., Emerging trends in phosphorene fabrication towards next generation devices. Advanced Science, 2017. 4(6): p. 1600305.
[58] G. Hu, et al., Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nature communications, 2017. 8(1): p. 1-10.
[59] S. Luo, et al., Self-standing polypyrrole/black phosphorus laminated film: promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS applied materials & interfaces, 2018. 10(4): p. 3538-3548.
[60] C. Hao, et al., Flexible all‐solid‐state supercapacitors based on liquid‐exfoliated black‐phosphorus nanoflakes. Advanced Materials, 2016. 28(16): p. 3194-3201.
[61] C.C. Mayorga‐Martinez, Z. Sofer, and M. Pumera, Layered black phosphorus as a selective vapor sensor. Angewandte Chemie International Edition, 2015. 54(48): p. 14317-14320.
[62] D. Hanlon, et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015. 6: p. 8563.
[63] S.Y. Cho, et al., Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene. Advanced Materials, 2016. 28(32): p. 7020-7028.
[64] X. Ling, et al., The renaissance of black phosphorus. Proceedings of the National Academy of Sciences, 2015. 112(15): p. 4523-4530.
[65] R.W. Keyes, The Electrical Properties of Black Phosphorus. Physical Review, 1953. 92(3): p. 580-584.
[66] B. Yang, et al., Te-Doped Black Phosphorus Field-Effect Transistors. Advanced Materials, 2016. 28(42): p. 9408-9415.
[67] P.L. Günther, P. Gesslle, and W. Rebentisch, Darstellung und Stabilitätsverhältnisse von schwarzem Phosphor. Zeitschrift für anorganische und allgemeine Chemie, 1943. 250(3‐4): p. 373-376.
[68] C.M. Park and H.J. Sohn, Black Phosphorus and its Composite for Lithium Rechargeable Batteries. Advanced Materials, 2007. 19(18): p. 2465-2468.
[69] R.M. Davis, B. McDermott, and C.C. Koch, Mechanical alloying of brittle materials. Metallurgical Transactions A, 1988. 19(12): p. 2867-2874.
[70] H. Krebs, H. Weitz, and K.H. Worms, Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors. Zeitschrift für anorganische und allgemeine Chemie, 1955. 280(1‐3): p. 119-133.
[71] T. Nilges, M. Kersting, and T. Pfeifer, A fast low-pressure transport route to large black phosphorus single crystals. Journal of Solid State Chemistry, 2008. 181(8): p. 1707-1711.
[72] M. Köpf, et al., Access and in situ growth of phosphorene-precursor black phosphorus. Journal of Crystal Growth, 2014. 405: p. 6-10.
[73] R. Gusmão, Z. Sofer, and M. Pumera, Black Phosphorus Rediscovered: From Bulk Material to Monolayers. Angewandte Chemie International Edition, 2017. 56(28): p. 8052-8072.
[74] M. Zhao, et al., Growth Mechanism and Enhanced Yield of Black Phosphorus Microribbons. Crystal Growth & Design, 2016. 16(2): p. 1096-1103.
[75] S. Lange, P. Schmidt, and T. Nilges, Au3SnP7@Black Phosphorus:  An Easy Access to Black Phosphorus. Inorganic Chemistry, 2007. 46(10): p. 4028-4035.
[76] M. Liu, et al., High yield growth and doping of black phosphorus with tunable electronic properties. Materials Today, 2020. 36: p. 91-101.
[77] Z. Chen, et al., A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm, 2017. 19(47): p. 7207-7212.
[78] S.P. Koenig, et al., Electric field effect in ultrathin black phosphorus. Applied Physics Letters, 2014. 104(10): p. 103106.
[79] T. Zhang, et al., Degradation Chemistry and Stabilization of Exfoliated Few-Layer Black Phosphorus in Water. Journal of the American Chemical Society, 2018. 140(24): p. 7561-7567.
[80] A. Castellanos-Gomez, et al., Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014. 1(2): p. 025001.
[81] A. Ziletti, et al., Oxygen Defects in Phosphorene. Physical Review Letters, 2015. 114(4): p. 046801.
[82] A. Favron, et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nature materials, 2015. 14(8): p. 826-832.
[83] G. Wang, et al., Degradation of phosphorene in air: understanding at atomic level. 2D Materials, 2016. 3(2): p. 025011.
[84] J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. The Journal of chemical physics, 2003. 118(18): p. 8207-8215.
[85] P.W. Bridgman, TWO NEW MODIFICATIONS OF PHOSPHORUS. Journal of the American Chemical Society, 1914. 36(7): p. 1344-1363.
[86] X. Chen, et al., High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nature communications, 2015. 6(1): p. 1-6.
[87] N. Clark, et al., Scalable patterning of encapsulated black phosphorus. Nano letters, 2018. 18(9): p. 5373-5381.
[88] M. Birowska, et al., The impact of hexagonal boron nitride encapsulation on the structural and vibrational properties of few layer black phosphorus. Nanotechnology, 2019. 30(19): p. 195201.
[89] G.C. Constantinescu and N.D. Hine, Multipurpose black-phosphorus/hBN heterostructures. Nano letters, 2016. 16(4): p. 2586-2594.
[90] J. Pei, et al., Producing air-stable monolayers of phosphorene and their defect engineering. Nature communications, 2016. 7(1): p. 1-8.
[91] S. Gamage, et al., Nanoscopy of black phosphorus degradation. Advanced Materials Interfaces, 2016. 3(12): p. 1600121.
[92] J.S. Kim, et al., Toward air-stable multilayer phosphorene thin-films and transistors. Scientific reports, 2015. 5(1): p. 1-7.
[93] J.D. Wood, et al., Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano letters, 2014. 14(12): p. 6964-6970.
[94] H. Zhu, et al., Al2O3 on black phosphorus by atomic layer deposition: an in situ interface study. ACS applied materials & interfaces, 2015. 7(23): p. 13038-13043.
[95] P. Li, et al., Air-stable black phosphorus devices for ion sensing. ACS applied materials & interfaces, 2015. 7(44): p. 24396-24402.
[96] C.R. Ryder, et al., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nature Chemistry, 2016. 8(6): p. 597-602.
[97] X. Wang, et al., A New Effective Approach to Prevent the Degradation of Black Phosphorus: The Scandium Transition Metal Doping. The Journal of Physical Chemistry C, 2018. 122(17): p. 9654-9662.
[98] H. Hu, et al., Recent advances in doping engineering of black phosphorus. Journal of Materials Chemistry A, 2020. 8(11): p. 5421-5441.
[99] Z. Guo, et al., Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance. Advanced Materials, 2017. 29(42): p. 1703811.
[100] Z. Liu, et al., Indium oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing at room temperature. Sensors and Actuators B: Chemical, 2020. 308: p. 127650.
[101] Y. Wang, et al., Room-temperature and humidity-resistant trace nitrogen dioxide sensing of few-layer black phosphorus nanosheet by incorporating zinc oxide nanowire. Analytical chemistry, 2020. 92(16): p. 11007-11017.
[102] H. Xu, et al., Selenium-Doped Amorphous Black Phosphorus@TiO2/C Heterostructures for High-Performance Li/Na/K Ion Batteries. Inorganic Chemistry, 2022. 61(7): p. 3121-3131.
[103] H. Ren, et al., One-step co-precipitation method to construct SnO quantum dots modified black phosphorus nanosheets for room-temperature trace NH3 sensing. Sensors and Actuators B: Chemical, 2022. 365(15): p. 131910.
[104] M. Ozhukil Valappil, et al., Electrochemical transformation of black phosphorous to phosphorene quantum dots: effect of nitrogen doping. Materials Research Express, 2020. 7(1): p. 014005.
[105] D.K. Kim, et al., P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices. ACS Nano, 2019.
[106] J. Zhang, et al., A first-principles study of doped black phosphorus carbide monolayers as NO2 and NH3 sensors. Journal of Applied Physics, 2019. 125(7): p. 074501.
[107] Z. Hu, et al., Abnormal Near-Infrared Absorption in 2D Black Phosphorus Induced by Ag Nanoclusters Surface Functionalization. Advanced Materials, 2018. 30(43): p. 1801931.
[108] S.Y. Cho, et al., Tunable Chemical Sensing Performance of Black Phosphorus by Controlled Functionalization with Noble Metals. Chemistry of Materials, 2017. 29(17): p. 7197-7205.
[109] A. Prakash, et al., Black Phosphorus N-Type Field-Effect Transistor with Ultrahigh Electron Mobility via Aluminum Adatoms Doping. Small, 2017. 13(5): p. 1602909.
[110] G. Abellán, et al., Exploring the Formation of Black Phosphorus Intercalation Compounds with Alkali Metals. Angewandte Chemie International Edition, 2017. 56(48): p. 15267-15273.
[111] C. Han, et al., Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Letters, 2017. 17(7): p. 4122-4129.
[112] G. Lee, et al., Platinum-functionalized black phosphorus hydrogen sensors. Applied Physics Letters, 2017. 110(24): p. 242103.
[113] D. Yang, et al., Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy. Advanced Functional Materials, 2017. 27(18): p. 1700371.
[114] G.L. Xu, et al., Nanostructured Black Phosphorus/Ketjenblack–Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. Nano Letters, 2016. 16(6): p. 3955-3965.
[115] Q. Jiang, et al., Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angewandte Chemie International Edition, 2016. 55(44): p. 13849-13853.
[116] J. Hu, et al., Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion. Nano Letters, 2016. 16(1): p. 74-79.
[117] W. Lei, et al., Bandgap- and Local Field-Dependent Photoactivity of Ag/Black Phosphorus Nanohybrids. ACS Catalysis, 2016. 6(12): p. 8009-8020.
[118] X. Feng, et al., Anomalously enhanced thermal stability of phosphorene via metal adatom doping: An experimental and first-principles study. Nano Research, 2016. 9(9): p. 2687-2695.
[119] S.P. Koenig, et al., Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. Nano Letters, 2016. 16(4): p. 2145-2151.
[120] L. Ye, et al., Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction. ACS Photonics, 2016. 3(4): p. 692-699.
[121] F. Liu, et al., 2D Black Phosphorus/SrTiO3-Based Programmable Photoconductive Switch. Advanced Materials, 2016. 28(35): p. 7768-7773.
[122] L. Viti, et al., Heterostructured hBN-BP-hBN Nanodetectors at Terahertz Frequencies. Advanced Materials, 2016. 28(34): p. 7390-7396.
[123] J. Lu, et al., Enhanced Photoresponse from Phosphorene-Phosphorene-Suboxide Junction Fashioned by Focused Laser Micromachining. Advanced Materials, 2016. 28(21): p. 4090-4096.
[124] Y. Du, et al., Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping. IEEE Electron Device Letters, 2016. 37(4): p. 429-432.
[125] Y. Zhao, et al., Surface Coordination of Black Phosphorus for Robust Air and Water Stability. Angewandte Chemie International Edition, 2016. 55(16): p. 5003-5007.
[126] G. Abellán, et al., Noncovalent Functionalization of Black Phosphorus. Angewandte Chemie International Edition, 2016. 55(47): p. 14557-14562.
[127] J. Shao, et al., Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016. 7(1): p. 12967.
[128] J. Sun, et al., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotechnology, 2015. 10(11): p. 980-985.
[129] J. Kim, et al., Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science, 2015. 349(6249): p. 723-726.
[130] R.A. Doganov, et al., Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Communications, 2015. 6(1): p. 6647.
[131] D. Xiang, et al., Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nature Communications, 2015. 6(1): p. 6485.
[132] H. Uk Lee, et al., Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Scientific Reports, 2015. 5(1): p. 8691.
[133] P. Gehring, et al., Thin-layer black phosphorus/GaAs heterojunction p-n diodes. Applied Physics Letters, 2015. 106(23): p. 233110.
[134] R. Yan, et al., Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment. Nano Letters, 2015. 15(9): p. 5791-5798.
[135] X. Zhang, et al., Black Phosphorus Quantum Dots. Angewandte Chemie International Edition, 2015. 54(12): p. 3653-3657.
[136] Z. Shen, et al., A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2015. 3(7): p. 3285-3288.
[137] Z. Sun, et al., Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie International Edition, 2015. 54(39): p. 11526-11530.
[138] Y. Deng, et al., Black Phosphorus–Monolayer MoS2 van der Waals Heterojunction p–n Diode. ACS Nano, 2014. 8(8): p. 8292-8299.
[139] Y. Xu, et al., End Group Modification for Black Phosphorus: Simultaneous Improvement of Chemical Stability and Gas Sensing Performance. ACS Applied Materials & Interfaces, 2021. 13(42): p. 50270-50280.
[140] Y. Wang, et al., Conductometric room temperature ammonia sensors based on titanium dioxide nanoparticles decorated thin black phosphorus nanosheets. Sensors and Actuators B: Chemical, 2021. 349(15): p. 130770.
[141] R. Jain, et al., Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. Chemistry of Materials, 2019. 31(8): p. 2786-2794.
[142] H. Wang, et al., Black Phosphorus Nanosheets Passivation Using a Tripeptide. Small, 2018. 14(35): p. 1801701.
[143] R. Gusmão, Z. Sofer, and M. Pumera, Functional Protection of Exfoliated Black Phosphorus by Noncovalent Modification with Anthraquinone. ACS Nano, 2018. 12(6): p. 5666-5673.
[144] Y. Cao, et al., Covalent Functionalization of Black Phosphorus with Conjugated Polymer for Information Storage. Angewandte Chemie International Edition, 2018. 57(17): p. 4543-4548.
[145] L. Shao, et al., Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2018. 6(6): p. 2494-2499.
[146] X. Zhu, et al., Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nature Communications, 2018. 9(1).
[147] H. Hu, et al., Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale, 2018. 10(13): p. 5834-5839.
[148] Y. Liu, et al., Azide Passivation of Black Phosphorus Nanosheets: Covalent Functionalization Affords Ambient Stability Enhancement. Angewandte Chemie International Edition, 2019. 58(5): p. 1479-1483.
[149] L. Wu, et al., Lanthanide-Coordinated Black Phosphorus. Small, 2018. 14(29): p. 1801405.
[150] C.X. Hu, et al., Polymer Ionic Liquid Stabilized Black Phosphorus for Environmental Robust Flexible Optoelectronics. Advanced Functional Materials, 2018. 28(51): p. 1805311.
[151] V. Kumar, et al., Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker. ACS Applied Materials & Interfaces, 2016. 8(35): p. 22860-22868.
[152] W. Chen, et al., Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Advanced Materials, 2017. 29(5): p. 1603864.
[153] J. Duan, et al., Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015. 5(9): p. 5207-5234.
[154] Z. Wei, et al., Various Structures of 2D Transition-Metal Dichalcogenides and Their Applications. Small Methods, 2018. 2(11): p. 1800094.
[155] Z. Hu, et al., Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chemical Society Reviews, 2018. 47(9): p. 3100-3128.
[156] Z. Wei and S. Zhuiykov, Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides. Nanoscale, 2019. 11(34): p. 15709-15738.
[157] X. Wang, et al., Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev., 2014. 43(20): p. 7067-7098.
[158] X.K. Kong, C.L. Chen, and Q.W. Chen, Doped graphene for metal-free catalysis. Chem. Soc. Rev., 2014. 43(8): p. 2841-2857.
[159] J.R. Durán Retamal, et al., Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chemical Science, 2018. 9(40): p. 7727-7745.
[160] N. Antonatos, et al., In Situ Doping of Black Phosphorus by High-Pressure Synthesis. Inorganic Chemistry, 2019. 58(15): p. 10227-10238.
[161] Y. Chang, et al., Liquid-exfoliation of S-doped black phosphorus nanosheets for enhanced oxygen evolution catalysis. Nanotechnology, 2018. 30(3): p. 035701.
[162] W. Lv, et al., Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability. ACS Applied Materials & Interfaces, 2018. 10(11): p. 9663-9668.
[163] B. Liu, et al., Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Advanced Materials, 2015. 27(30): p. 4423-4429.
[164] Z. Zhang, et al., Uniform Tellurium Doping in Black Phosphorus Single Crystals by Chemical Vapor Transport. Inorganic Chemistry, 2018. 57(7): p. 4098-4103.
[165] Y. Yu, et al., N-type doping of black phosphorus single crystal by tellurium. Nanotechnology, 2020. 31(31): p. 315605.
[166] L.D. He, et al., Heteroatom‐Doped Black Phosphorus and Its Application: A Review. Chinese Journal of Chemistry, 2021. 39(3): p. 690-700.
[167] L. Viti, et al., Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale, 2019. 11(4): p. 1995-2002.
[168] M. Li, et al., Revealing Dopant Local Structure of Se-Doped Black Phosphorus. Chemistry of Materials, 2021. 33(6): p. 2029-2036.
[169] T. Song, et al., Creating an Air-Stable Sulfur-Doped Black Phosphorus-TiO2 Composite as High-Performance Anode Material for Sodium-Ion Storage. Advanced Functional Materials, 2019. 29(22): p. 1900535.
[170] Y. Ge, et al., Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. Journal of Materials Chemistry C, 2017. 5(25): p. 6129-6135.
[171] Y. Xu, et al., Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors. Small, 2016. 12(36): p. 5000-5007.
[172] P.K. Sarswat, et al., Structural and Electrical Irregularities Caused by Selected Dopants in Black-Phosphorus. ECS Journal of Solid State Science and Technology, 2016. 5(11): p. Q3026-Q3032.
[173] L. Kou, T. Frauenheim, and C. Chen, Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I–V Response. The Journal of Physical Chemistry Letters, 2014. 5(15): p. 2675-2681.
[174] A.N. Abbas, et al., Black phosphorus gas sensors. ACS nano, 2015. 9(5): p. 5618-5624.
[175] Y. Wang, et al., Novel intercalated CuO/black phosphorus nanocomposites: Fabrication, characterization and NO2 gas sensing at room temperature. Materials Science in Semiconductor Processing, 2020. 110: p. 104961.
[176] Y. Liu, et al., Facile Synthesis of Highly Dispersed Co3O4 Nanoparticles on Expanded, Thin Black Phosphorus for a ppb-Level NOx Gas Sensor. ACS Sensors, 2018. 3(8): p. 1576-1583.
[177] T. Liang, et al., Suppression of Sn2+ and Lewis acidity in SnS2/black phosphorus heterostructure for ppb-level room temperature NO2 gas sensor. Science Bulletin, 2021. 66(24): p. 2471-2478.
[178] Q. Li, et al., Zinc oxide–black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Horizons, 2018. 3(5): p. 525-531.
[179] Y.H. Pai and C.H. Chen, Long-term can-sealing protection: a stable black phosphorus nanoassembly achieved through heterogeneous hydrophobic functionalization. Nanoscale, 2021. 13(2): p. 763-775.
[180] J. Miao, et al., Air-Stable Humidity Sensor Using Few-Layer Black Phosphorus. ACS Applied Materials & Interfaces, 2017. 9(11): p. 10019-10026.
[181] J. Li, et al., Improving Humidity Sensing of Black Phosphorus Nanosheets by Co-Doping Benzyl Viologen and Au Nanoparticles. Journal of The Electrochemical Society, 2022. 169(1): p. 017513.
[182] M. Valt, et al., Air Stable Nickel-Decorated Black Phosphorus and Its Room-Temperature Chemiresistive Gas Sensor Capabilities. ACS Applied Materials & Interfaces, 2021. 13(37): p. 44711-44722.
[183] K. Arshak, et al., A review of gas sensors employed in electronic nose applications. Sensor review, 2004.
[184] W.H. Brattain and J. Bardeen, Surface properties of germanium. The Bell System Technical Journal, 1953. 32(1): p. 1-41.
[185] T. Seiyama, et al., A new detector for gaseous components using semiconductive thin films. Analytical Chemistry, 1962. 34(11): p. 1502-1503.
[186] S. Supothina, Gas sensing properties of nanocrystalline SnO2 thin films prepared by liquid flow deposition. Sensors and Actuators B: Chemical, 2003. 93(1-3): p. 526-530.
[187] N.G. Patel, K.K. Makhija, and C.J. Panchal, Fabrication of carbon dioxide gas sensor and its alarm system using indium tin oxide (ITO) thin films. Sensors and Actuators B: Chemical, 1994. 21(3): p. 193-197.
[188] N. Kaur, M. Singh, and E. Comini, One-Dimensional Nanostructured Oxide Chemoresistive Sensors. Langmuir, 2020. 36(23): p. 6326-6344.
[189] N. Donato, M. Latino, and G. Neri, Novel carbon nanotubes-based hybrid composites for sensing applications. 2011, InTech.
[190] K.D. Schierbaum, et al., Conductance, work function and catalytic activity of SnO2-based gas sensors. Sensors and Actuators B: Chemical, 1991. 3(3): p. 205-214.
[191] Y. Hu, et al., Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts. Advanced Materials, 2010. 22(30): p. 3327-3332.
[192] F. Lu, et al., Nanosized tin oxide as the novel material with simultaneous detection towards CO, H2 and CH4. Sensors and Actuators B: Chemical, 2000. 66(1-3): p. 225-227.
[193] A. Rothschild and Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. Journal of Applied Physics, 2004. 95(11): p. 6374-6380.
[194] J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sensors and Actuators B: Chemical, 2009. 140(1): p. 319-336.
[195] Q. Qi, et al., Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference. Sensors and Actuators B: Chemical, 2008. 134(1): p. 36-42.
[196] J. Gong, et al., Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sensors and Actuators B: Chemical, 2006. 114(1): p. 32-39.
[197] M. Egashira, et al., Temperature programmed desorption study of water adsorbed on metal oxides. I. Anatase and rutile. Bulletin of the Chemical Society of Japan, 1978. 51(11): p. 3144-3149.
[198] Z. Jing and J. Zhan, Fabrication and gas‐sensing properties of porous ZnO nanoplates. Advanced Materials, 2008. 20(23): p. 4547-4551.
[199] A. Kolmakov, et al., Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano letters, 2005. 5(4): p. 667-673.
[200] Y. Lu, et al., Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chemical Physics Letters, 2004. 391(4-6): p. 344-348.
[201] D. Wang, et al., Low-temperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports. The Journal of Physical Chemistry C, 2008. 112(35): p. 13499-13509.
[202] Y. Shimizu, et al., Improvement of SO2 sensing properties of WO3 by noble metal loading. Sensors and Actuators B: Chemical, 2001. 77(1-2): p. 35-40.
[203] A.M. Ruiz, et al., Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sensors and Actuators B: Chemical, 2005. 108(1-2): p. 34-40.
[204] C.R. Henry, C. Chapon, and C. Duriez, Precursor state in the chemisorption of CO on supported palladium clusters. The Journal of chemical physics, 1991. 95(1): p. 700-705.
[205] J. Liu, et al., Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5(en = ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection. Nanotechnology, 2009. 20(12): p. 125501.
[206] H.B. Ribeiro, M.A. Pimenta, and J.S. Christiano, Raman spectroscopy in black phosphorus. Journal of Raman Spectroscopy, 2018. 49(1): p. 76-90.
[207] S. Sugai and I. Shirotani, Raman and infrared reflection spectroscopy in black phosphorus. Solid State Communications, 1985. 53(9): p. 753-755.
[208] Z. Zhang, et al., Two-step heating synthesis of sub-3 millimeter-sized orthorhombic black phosphorus single crystal by chemical vapor transport reaction method. Science China Materials, 2016. 59(2): p. 122-134.
[209] M. Zhao, et al., Understanding the growth of black phosphorus crystals. CrystEngComm, 2016. 18(40): p. 7737-7744.
[210] Z. Zhang, et al., Hittorf's phosphorus: the missing link during transformation of red phosphorus to black phosphorus. CrystEngComm, 2017. 19(6): p. 905-909.
[211] W. Li, et al., Phosphorene Nanosheets Exfoliated from Low-Cost and High-Quality Black Phosphorus for Hydrogen Evolution. ACS Applied Nano Materials, 2020. 3(8): p. 7508-7515.
[212] F.E. Manjli, et al., From amorphous red phosphorus to black phosphorus crystal: Anoptimization, controllable and highest yield synthesis process. Journal of Crystal Growth, 2022. 577(1): p. 126408.
[213] N. Mao, et al., Lattice Vibration and Raman Scattering in Anisotropic Black Phosphorus Crystals. Small Methods, 2018. 2(6): p. 1700409.
[214] G. Abellán, et al., Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus. Journal of the American Chemical Society, 2017. 139(30): p. 10432-10440.
[215] F. Alsaffar, et al., Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus. Scientific Reports, 2017. 7(1): p. 44540.
[216] S. Wu, et al., Black Phosphorus: Degradation Favors Lubrication. Nano Letters, 2018. 18(9): p. 5618-5627.
電子全文 電子全文(網際網路公開日期:20251012)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊