|
[1] K.S. Novoselov, et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669. [2] G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Materials Science and Engineering: B, 2007. 139(1): p. 1-23. [3] A.C. Ferrari, et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015. 7(11): p. 4598-4810. [4] X. Zhang, et al., 2D materials beyond graphene for high‐performance energy storage applications. Advanced Energy Materials, 2016. 6(23): p. 1600671. [5] H. Zhang, Ultrathin two-dimensional nanomaterials. ACS nano, 2015. 9(10): p. 9451-9469. [6] C.N.R. Rao, H.S.S. Ramakrishna Matte, and U. Maitra, Graphen‐analoge anorganische Schichtmaterialien. Angewandte Chemie, 2013. 125(50): p. 13400-13424. [7] K. Shehzad, et al., Three-dimensional macro-structures of two-dimensional nanomaterials. Chemical Society Reviews, 2016. 45(20): p. 5541-5588. [8] K.S. Chen, et al., Emerging opportunities for two-dimensional materials in lithium-ion batteries. ACS Energy Letters, 2017. 2(9): p. 2026-2034. [9] R. Dong, T. Zhang, and X. Feng, Interface-assisted synthesis of 2D materials: trend and challenges. Chemical reviews, 2018. 118(13): p. 6189-6235. [10] H. Jin, et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chemical reviews, 2018. 118(13): p. 6337-6408. [11] M. Zeng, et al., Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control. Chemical reviews, 2018. 118(13): p. 6236-6296. [12] M. Naguib and Y. Gogotsi, Synthesis of two-dimensional materials by selective extraction. Accounts of chemical research, 2015. 48(1): p. 128-135. [13] Y. Sun, et al., Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry. Accounts of chemical research, 2015. 48(1): p. 3-12. [14] M. Long, et al., Progress, challenges, and opportunities for 2D material based photodetectors. Advanced Functional Materials, 2019. 29(19): p. 1803807. [15] C. Tan, et al., Recent advances in ultrathin two-dimensional nanomaterials. Chemical reviews, 2017. 117(9): p. 6225-6331. [16] P. Zhang, et al., Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chemical Society Reviews, 2018. 47(19): p. 7426-7451. [17] Y. Zhao, et al., Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chemical Society Reviews, 2019. 48(7): p. 1972-2010. [18] X. Xia, et al., Three-dimensional graphene and their integrated electrodes. Nano Today, 2014. 9(6): p. 785-807. [19] X. Cui, et al., Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 2011. 3(5): p. 2118-2126. [20] Y. Lin, T.V. Williams, and J.W. Connell, Soluble, exfoliated hexagonal boron nitride nanosheets. The Journal of Physical Chemistry Letters, 2010. 1(1): p. 277-283. [21] X.F. Jiang, et al., Recent progress on fabrications and applications of boron nitride nanomaterials: a review. Journal of Materials Science & Technology, 2015. 31(6): p. 589-598. [22] M. Chhowalla, et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 2013. 5(4): p. 263-275. [23] C. Tan and H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 2015. 44(9): p. 2713-2731. [24] H. Wang, et al., Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2015. 44(9): p. 2664-2680. [25] X. Duan, et al., Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chemical Society Reviews, 2015. 44(24): p. 8859-8876. [26] H. Liu, et al., Recent advances on black phosphorus for energy storage, catalysis, and sensor applications. Advanced Materials, 2018. 30(32): p. 1800295. [27] Y. Wang, et al., Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Advanced Science, 2018. 5(8): p. 1800064. [28] Z. Zhao, Y. Sun, and F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale, 2015. 7(1): p. 15-37. [29] J. Liu, H. Wang, and M. Antonietti, Graphitic carbon nitride “reloaded”: emerging applications beyond (photo) catalysis. Chemical Society Reviews, 2016. 45(8): p. 2308-2326. [30] X. Feng and A.D. Schlüter, Makroskopische kristalline 2D‐Polymere. Angewandte Chemie, 2018. 130(42): p. 13942-13959. [31] M.P. Browne, Z. Sofer, and M. Pumera, Layered and two dimensional metal oxides for electrochemical energy conversion. Energy & Environmental Science, 2019. 12(1): p. 41-58. [32] B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017. 2(2): p. 1-17. [33] J. Pang, et al., Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019. 48(1): p. 72-133. [34] S. Balendhran, et al., Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small, 2015. 11(6): p. 640-652. [35] K.S. Novoselov, et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200. [36] M. Batmunkh, M. Bat‐Erdene, and J.G. Shapter, Phosphorene and phosphorene‐based materials–prospects for future applications. Advanced Materials, 2016. 28(39): p. 8586-8617. [37] H. Liu, et al., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS nano, 2014. 8(4): p. 4033-4041. [38] Y. Du, et al., Ab initio studies on atomic and electronic structures of black phosphorus. Journal of Applied Physics, 2010. 107(9): p. 093718. [39] N. Mao, et al., Optical Anisotropy of Black Phosphorus in the Visible Regime. Journal of the American Chemical Society, 2016. 138(1): p. 300-305. [40] J. Tao, et al., Mechanical and electrical anisotropy of few-layer black phosphorus. ACS nano, 2015. 9(11): p. 11362-11370. [41] X. Ling, et al., Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Letters, 2016. 16(4): p. 2260-2267. [42] Q. Wei and X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Applied Physics Letters, 2014. 104(25): p. 251915. [43] G. Qin and M. Hu, Thermal transport in phosphorene. Small, 2018. 14(12): p. 1702465. [44] S. Huang, et al., Strain-tunable van der Waals interactions in few-layer black phosphorus. Nature communications, 2019. 10(1): p. 1-7. [45] B. Smith, et al., Temperature and thickness dependences of the anisotropic in‐plane thermal conductivity of black phosphorus. Advanced Materials, 2017. 29(5): p. 1603756. [46] M. Li, et al., Anisotropic thermal boundary resistance across 2D black phosphorus: experiment and atomistic modeling of interfacial energy transport. Advanced Materials, 2019. 31(33): p. 1901021. [47] L. Li, et al., Black phosphorus field-effect transistors. Nature Nanotechnology, 2014. 9(5): p. 372-377. [48] W. Tao, et al., Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Advanced Materials, 2017. 29(1): p. 1603276. [49] R. Kurapati, et al., Biomedical uses for 2D materials beyond graphene: current advances and challenges ahead. Advanced Materials, 2016. 28(29): p. 6052-6074. [50] M. Qiu, et al., Current progress in black phosphorus materials and their applications in electrochemical energy storage. Nanoscale, 2017. 9(36): p. 13384-13403. [51] J. Pang, et al., Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials, 2018. 8(8): p. 1702093. [52] H. Wang, et al., Optically switchable photocatalysis in ultrathin black phosphorus nanosheets. Journal of the American Chemical Society, 2018. 140(9): p. 3474-3480. [53] B. Li, et al., Black phosphorus, a rising star 2D nanomaterial in the post‐graphene era: synthesis, properties, modifications, and photocatalysis applications. Small, 2019. 15(8): p. 1804565. [54] J. Sun, et al., Entrapment of polysulfides by a black‐phosphorus‐modified separator for lithium–sulfur batteries. Advanced materials, 2016. 28(44): p. 9797-9803. [55] F. Xia, H. Wang, and Y. Jia, Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature communications, 2014. 5(1): p. 1-6. [56] N. Youngblood, et al., Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015. 9(4): p. 247-252. [57] S.C. Dhanabalan, et al., Emerging trends in phosphorene fabrication towards next generation devices. Advanced Science, 2017. 4(6): p. 1600305. [58] G. Hu, et al., Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics. Nature communications, 2017. 8(1): p. 1-10. [59] S. Luo, et al., Self-standing polypyrrole/black phosphorus laminated film: promising electrode for flexible supercapacitor with enhanced capacitance and cycling stability. ACS applied materials & interfaces, 2018. 10(4): p. 3538-3548. [60] C. Hao, et al., Flexible all‐solid‐state supercapacitors based on liquid‐exfoliated black‐phosphorus nanoflakes. Advanced Materials, 2016. 28(16): p. 3194-3201. [61] C.C. Mayorga‐Martinez, Z. Sofer, and M. Pumera, Layered black phosphorus as a selective vapor sensor. Angewandte Chemie International Edition, 2015. 54(48): p. 14317-14320. [62] D. Hanlon, et al., Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015. 6: p. 8563. [63] S.Y. Cho, et al., Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene. Advanced Materials, 2016. 28(32): p. 7020-7028. [64] X. Ling, et al., The renaissance of black phosphorus. Proceedings of the National Academy of Sciences, 2015. 112(15): p. 4523-4530. [65] R.W. Keyes, The Electrical Properties of Black Phosphorus. Physical Review, 1953. 92(3): p. 580-584. [66] B. Yang, et al., Te-Doped Black Phosphorus Field-Effect Transistors. Advanced Materials, 2016. 28(42): p. 9408-9415. [67] P.L. Günther, P. Gesslle, and W. Rebentisch, Darstellung und Stabilitätsverhältnisse von schwarzem Phosphor. Zeitschrift für anorganische und allgemeine Chemie, 1943. 250(3‐4): p. 373-376. [68] C.M. Park and H.J. Sohn, Black Phosphorus and its Composite for Lithium Rechargeable Batteries. Advanced Materials, 2007. 19(18): p. 2465-2468. [69] R.M. Davis, B. McDermott, and C.C. Koch, Mechanical alloying of brittle materials. Metallurgical Transactions A, 1988. 19(12): p. 2867-2874. [70] H. Krebs, H. Weitz, and K.H. Worms, Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors. Zeitschrift für anorganische und allgemeine Chemie, 1955. 280(1‐3): p. 119-133. [71] T. Nilges, M. Kersting, and T. Pfeifer, A fast low-pressure transport route to large black phosphorus single crystals. Journal of Solid State Chemistry, 2008. 181(8): p. 1707-1711. [72] M. Köpf, et al., Access and in situ growth of phosphorene-precursor black phosphorus. Journal of Crystal Growth, 2014. 405: p. 6-10. [73] R. Gusmão, Z. Sofer, and M. Pumera, Black Phosphorus Rediscovered: From Bulk Material to Monolayers. Angewandte Chemie International Edition, 2017. 56(28): p. 8052-8072. [74] M. Zhao, et al., Growth Mechanism and Enhanced Yield of Black Phosphorus Microribbons. Crystal Growth & Design, 2016. 16(2): p. 1096-1103. [75] S. Lange, P. Schmidt, and T. Nilges, Au3SnP7@Black Phosphorus: An Easy Access to Black Phosphorus. Inorganic Chemistry, 2007. 46(10): p. 4028-4035. [76] M. Liu, et al., High yield growth and doping of black phosphorus with tunable electronic properties. Materials Today, 2020. 36: p. 91-101. [77] Z. Chen, et al., A stage-by-stage phase-induction and nucleation of black phosphorus from red phosphorus under low-pressure mineralization. CrystEngComm, 2017. 19(47): p. 7207-7212. [78] S.P. Koenig, et al., Electric field effect in ultrathin black phosphorus. Applied Physics Letters, 2014. 104(10): p. 103106. [79] T. Zhang, et al., Degradation Chemistry and Stabilization of Exfoliated Few-Layer Black Phosphorus in Water. Journal of the American Chemical Society, 2018. 140(24): p. 7561-7567. [80] A. Castellanos-Gomez, et al., Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014. 1(2): p. 025001. [81] A. Ziletti, et al., Oxygen Defects in Phosphorene. Physical Review Letters, 2015. 114(4): p. 046801. [82] A. Favron, et al., Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nature materials, 2015. 14(8): p. 826-832. [83] G. Wang, et al., Degradation of phosphorene in air: understanding at atomic level. 2D Materials, 2016. 3(2): p. 025011. [84] J. Heyd, G.E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential. The Journal of chemical physics, 2003. 118(18): p. 8207-8215. [85] P.W. Bridgman, TWO NEW MODIFICATIONS OF PHOSPHORUS. Journal of the American Chemical Society, 1914. 36(7): p. 1344-1363. [86] X. Chen, et al., High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nature communications, 2015. 6(1): p. 1-6. [87] N. Clark, et al., Scalable patterning of encapsulated black phosphorus. Nano letters, 2018. 18(9): p. 5373-5381. [88] M. Birowska, et al., The impact of hexagonal boron nitride encapsulation on the structural and vibrational properties of few layer black phosphorus. Nanotechnology, 2019. 30(19): p. 195201. [89] G.C. Constantinescu and N.D. Hine, Multipurpose black-phosphorus/hBN heterostructures. Nano letters, 2016. 16(4): p. 2586-2594. [90] J. Pei, et al., Producing air-stable monolayers of phosphorene and their defect engineering. Nature communications, 2016. 7(1): p. 1-8. [91] S. Gamage, et al., Nanoscopy of black phosphorus degradation. Advanced Materials Interfaces, 2016. 3(12): p. 1600121. [92] J.S. Kim, et al., Toward air-stable multilayer phosphorene thin-films and transistors. Scientific reports, 2015. 5(1): p. 1-7. [93] J.D. Wood, et al., Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano letters, 2014. 14(12): p. 6964-6970. [94] H. Zhu, et al., Al2O3 on black phosphorus by atomic layer deposition: an in situ interface study. ACS applied materials & interfaces, 2015. 7(23): p. 13038-13043. [95] P. Li, et al., Air-stable black phosphorus devices for ion sensing. ACS applied materials & interfaces, 2015. 7(44): p. 24396-24402. [96] C.R. Ryder, et al., Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nature Chemistry, 2016. 8(6): p. 597-602. [97] X. Wang, et al., A New Effective Approach to Prevent the Degradation of Black Phosphorus: The Scandium Transition Metal Doping. The Journal of Physical Chemistry C, 2018. 122(17): p. 9654-9662. [98] H. Hu, et al., Recent advances in doping engineering of black phosphorus. Journal of Materials Chemistry A, 2020. 8(11): p. 5421-5441. [99] Z. Guo, et al., Metal‐ion‐modified black phosphorus with enhanced stability and transistor performance. Advanced Materials, 2017. 29(42): p. 1703811. [100] Z. Liu, et al., Indium oxide-black phosphorus composites for ultrasensitive nitrogen dioxide sensing at room temperature. Sensors and Actuators B: Chemical, 2020. 308: p. 127650. [101] Y. Wang, et al., Room-temperature and humidity-resistant trace nitrogen dioxide sensing of few-layer black phosphorus nanosheet by incorporating zinc oxide nanowire. Analytical chemistry, 2020. 92(16): p. 11007-11017. [102] H. Xu, et al., Selenium-Doped Amorphous Black Phosphorus@TiO2/C Heterostructures for High-Performance Li/Na/K Ion Batteries. Inorganic Chemistry, 2022. 61(7): p. 3121-3131. [103] H. Ren, et al., One-step co-precipitation method to construct SnO quantum dots modified black phosphorus nanosheets for room-temperature trace NH3 sensing. Sensors and Actuators B: Chemical, 2022. 365(15): p. 131910. [104] M. Ozhukil Valappil, et al., Electrochemical transformation of black phosphorous to phosphorene quantum dots: effect of nitrogen doping. Materials Research Express, 2020. 7(1): p. 014005. [105] D.K. Kim, et al., P–N Junction Diode Using Plasma Boron-Doped Black Phosphorus for High-Performance Photovoltaic Devices. ACS Nano, 2019. [106] J. Zhang, et al., A first-principles study of doped black phosphorus carbide monolayers as NO2 and NH3 sensors. Journal of Applied Physics, 2019. 125(7): p. 074501. [107] Z. Hu, et al., Abnormal Near-Infrared Absorption in 2D Black Phosphorus Induced by Ag Nanoclusters Surface Functionalization. Advanced Materials, 2018. 30(43): p. 1801931. [108] S.Y. Cho, et al., Tunable Chemical Sensing Performance of Black Phosphorus by Controlled Functionalization with Noble Metals. Chemistry of Materials, 2017. 29(17): p. 7197-7205. [109] A. Prakash, et al., Black Phosphorus N-Type Field-Effect Transistor with Ultrahigh Electron Mobility via Aluminum Adatoms Doping. Small, 2017. 13(5): p. 1602909. [110] G. Abellán, et al., Exploring the Formation of Black Phosphorus Intercalation Compounds with Alkali Metals. Angewandte Chemie International Edition, 2017. 56(48): p. 15267-15273. [111] C. Han, et al., Surface Functionalization of Black Phosphorus via Potassium toward High-Performance Complementary Devices. Nano Letters, 2017. 17(7): p. 4122-4129. [112] G. Lee, et al., Platinum-functionalized black phosphorus hydrogen sensors. Applied Physics Letters, 2017. 110(24): p. 242103. [113] D. Yang, et al., Assembly of Au Plasmonic Photothermal Agent and Iron Oxide Nanoparticles on Ultrathin Black Phosphorus for Targeted Photothermal and Photodynamic Cancer Therapy. Advanced Functional Materials, 2017. 27(18): p. 1700371. [114] G.L. Xu, et al., Nanostructured Black Phosphorus/Ketjenblack–Multiwalled Carbon Nanotubes Composite as High Performance Anode Material for Sodium-Ion Batteries. Nano Letters, 2016. 16(6): p. 3955-3965. [115] Q. Jiang, et al., Facile Synthesis of Black Phosphorus: an Efficient Electrocatalyst for the Oxygen Evolving Reaction. Angewandte Chemie International Edition, 2016. 55(44): p. 13849-13853. [116] J. Hu, et al., Band Gap Engineering in a 2D Material for Solar-to-Chemical Energy Conversion. Nano Letters, 2016. 16(1): p. 74-79. [117] W. Lei, et al., Bandgap- and Local Field-Dependent Photoactivity of Ag/Black Phosphorus Nanohybrids. ACS Catalysis, 2016. 6(12): p. 8009-8020. [118] X. Feng, et al., Anomalously enhanced thermal stability of phosphorene via metal adatom doping: An experimental and first-principles study. Nano Research, 2016. 9(9): p. 2687-2695. [119] S.P. Koenig, et al., Electron Doping of Ultrathin Black Phosphorus with Cu Adatoms. Nano Letters, 2016. 16(4): p. 2145-2151. [120] L. Ye, et al., Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction. ACS Photonics, 2016. 3(4): p. 692-699. [121] F. Liu, et al., 2D Black Phosphorus/SrTiO3-Based Programmable Photoconductive Switch. Advanced Materials, 2016. 28(35): p. 7768-7773. [122] L. Viti, et al., Heterostructured hBN-BP-hBN Nanodetectors at Terahertz Frequencies. Advanced Materials, 2016. 28(34): p. 7390-7396. [123] J. Lu, et al., Enhanced Photoresponse from Phosphorene-Phosphorene-Suboxide Junction Fashioned by Focused Laser Micromachining. Advanced Materials, 2016. 28(21): p. 4090-4096. [124] Y. Du, et al., Performance Enhancement of Black Phosphorus Field-Effect Transistors by Chemical Doping. IEEE Electron Device Letters, 2016. 37(4): p. 429-432. [125] Y. Zhao, et al., Surface Coordination of Black Phosphorus for Robust Air and Water Stability. Angewandte Chemie International Edition, 2016. 55(16): p. 5003-5007. [126] G. Abellán, et al., Noncovalent Functionalization of Black Phosphorus. Angewandte Chemie International Edition, 2016. 55(47): p. 14557-14562. [127] J. Shao, et al., Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016. 7(1): p. 12967. [128] J. Sun, et al., A phosphorene–graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotechnology, 2015. 10(11): p. 980-985. [129] J. Kim, et al., Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science, 2015. 349(6249): p. 723-726. [130] R.A. Doganov, et al., Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Communications, 2015. 6(1): p. 6647. [131] D. Xiang, et al., Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nature Communications, 2015. 6(1): p. 6485. [132] H. Uk Lee, et al., Stable semiconductor black phosphorus (BP)@titanium dioxide (TiO2) hybrid photocatalysts. Scientific Reports, 2015. 5(1): p. 8691. [133] P. Gehring, et al., Thin-layer black phosphorus/GaAs heterojunction p-n diodes. Applied Physics Letters, 2015. 106(23): p. 233110. [134] R. Yan, et al., Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment. Nano Letters, 2015. 15(9): p. 5791-5798. [135] X. Zhang, et al., Black Phosphorus Quantum Dots. Angewandte Chemie International Edition, 2015. 54(12): p. 3653-3657. [136] Z. Shen, et al., A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry A, 2015. 3(7): p. 3285-3288. [137] Z. Sun, et al., Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angewandte Chemie International Edition, 2015. 54(39): p. 11526-11530. [138] Y. Deng, et al., Black Phosphorus–Monolayer MoS2 van der Waals Heterojunction p–n Diode. ACS Nano, 2014. 8(8): p. 8292-8299. [139] Y. Xu, et al., End Group Modification for Black Phosphorus: Simultaneous Improvement of Chemical Stability and Gas Sensing Performance. ACS Applied Materials & Interfaces, 2021. 13(42): p. 50270-50280. [140] Y. Wang, et al., Conductometric room temperature ammonia sensors based on titanium dioxide nanoparticles decorated thin black phosphorus nanosheets. Sensors and Actuators B: Chemical, 2021. 349(15): p. 130770. [141] R. Jain, et al., Ambient Stabilization of Few Layer Phosphorene via Noncovalent Functionalization with Surfactants: Systematic 2D NMR Characterization in Aqueous Dispersion. Chemistry of Materials, 2019. 31(8): p. 2786-2794. [142] H. Wang, et al., Black Phosphorus Nanosheets Passivation Using a Tripeptide. Small, 2018. 14(35): p. 1801701. [143] R. Gusmão, Z. Sofer, and M. Pumera, Functional Protection of Exfoliated Black Phosphorus by Noncovalent Modification with Anthraquinone. ACS Nano, 2018. 12(6): p. 5666-5673. [144] Y. Cao, et al., Covalent Functionalization of Black Phosphorus with Conjugated Polymer for Information Storage. Angewandte Chemie International Edition, 2018. 57(17): p. 4543-4548. [145] L. Shao, et al., Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. Journal of Materials Chemistry A, 2018. 6(6): p. 2494-2499. [146] X. Zhu, et al., Stabilizing black phosphorus nanosheets via edge-selective bonding of sacrificial C60 molecules. Nature Communications, 2018. 9(1). [147] H. Hu, et al., Covalent functionalization of black phosphorus nanoflakes by carbon free radicals for durable air and water stability. Nanoscale, 2018. 10(13): p. 5834-5839. [148] Y. Liu, et al., Azide Passivation of Black Phosphorus Nanosheets: Covalent Functionalization Affords Ambient Stability Enhancement. Angewandte Chemie International Edition, 2019. 58(5): p. 1479-1483. [149] L. Wu, et al., Lanthanide-Coordinated Black Phosphorus. Small, 2018. 14(29): p. 1801405. [150] C.X. Hu, et al., Polymer Ionic Liquid Stabilized Black Phosphorus for Environmental Robust Flexible Optoelectronics. Advanced Functional Materials, 2018. 28(51): p. 1805311. [151] V. Kumar, et al., Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker. ACS Applied Materials & Interfaces, 2016. 8(35): p. 22860-22868. [152] W. Chen, et al., Black Phosphorus Nanosheet-Based Drug Delivery System for Synergistic Photodynamic/Photothermal/Chemotherapy of Cancer. Advanced Materials, 2017. 29(5): p. 1603864. [153] J. Duan, et al., Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. ACS Catalysis, 2015. 5(9): p. 5207-5234. [154] Z. Wei, et al., Various Structures of 2D Transition-Metal Dichalcogenides and Their Applications. Small Methods, 2018. 2(11): p. 1800094. [155] Z. Hu, et al., Two-dimensional transition metal dichalcogenides: interface and defect engineering. Chemical Society Reviews, 2018. 47(9): p. 3100-3128. [156] Z. Wei and S. Zhuiykov, Challenges and recent advancements of functionalization of two-dimensional nanostructured molybdenum trioxide and dichalcogenides. Nanoscale, 2019. 11(34): p. 15709-15738. [157] X. Wang, et al., Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev., 2014. 43(20): p. 7067-7098. [158] X.K. Kong, C.L. Chen, and Q.W. Chen, Doped graphene for metal-free catalysis. Chem. Soc. Rev., 2014. 43(8): p. 2841-2857. [159] J.R. Durán Retamal, et al., Charge carrier injection and transport engineering in two-dimensional transition metal dichalcogenides. Chemical Science, 2018. 9(40): p. 7727-7745. [160] N. Antonatos, et al., In Situ Doping of Black Phosphorus by High-Pressure Synthesis. Inorganic Chemistry, 2019. 58(15): p. 10227-10238. [161] Y. Chang, et al., Liquid-exfoliation of S-doped black phosphorus nanosheets for enhanced oxygen evolution catalysis. Nanotechnology, 2018. 30(3): p. 035701. [162] W. Lv, et al., Sulfur-Doped Black Phosphorus Field-Effect Transistors with Enhanced Stability. ACS Applied Materials & Interfaces, 2018. 10(11): p. 9663-9668. [163] B. Liu, et al., Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Advanced Materials, 2015. 27(30): p. 4423-4429. [164] Z. Zhang, et al., Uniform Tellurium Doping in Black Phosphorus Single Crystals by Chemical Vapor Transport. Inorganic Chemistry, 2018. 57(7): p. 4098-4103. [165] Y. Yu, et al., N-type doping of black phosphorus single crystal by tellurium. Nanotechnology, 2020. 31(31): p. 315605. [166] L.D. He, et al., Heteroatom‐Doped Black Phosphorus and Its Application: A Review. Chinese Journal of Chemistry, 2021. 39(3): p. 690-700. [167] L. Viti, et al., Thermoelectric terahertz photodetectors based on selenium-doped black phosphorus flakes. Nanoscale, 2019. 11(4): p. 1995-2002. [168] M. Li, et al., Revealing Dopant Local Structure of Se-Doped Black Phosphorus. Chemistry of Materials, 2021. 33(6): p. 2029-2036. [169] T. Song, et al., Creating an Air-Stable Sulfur-Doped Black Phosphorus-TiO2 Composite as High-Performance Anode Material for Sodium-Ion Storage. Advanced Functional Materials, 2019. 29(22): p. 1900535. [170] Y. Ge, et al., Few-layer selenium-doped black phosphorus: synthesis, nonlinear optical properties and ultrafast photonics applications. Journal of Materials Chemistry C, 2017. 5(25): p. 6129-6135. [171] Y. Xu, et al., Selenium-Doped Black Phosphorus for High-Responsivity 2D Photodetectors. Small, 2016. 12(36): p. 5000-5007. [172] P.K. Sarswat, et al., Structural and Electrical Irregularities Caused by Selected Dopants in Black-Phosphorus. ECS Journal of Solid State Science and Technology, 2016. 5(11): p. Q3026-Q3032. [173] L. Kou, T. Frauenheim, and C. Chen, Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I–V Response. The Journal of Physical Chemistry Letters, 2014. 5(15): p. 2675-2681. [174] A.N. Abbas, et al., Black phosphorus gas sensors. ACS nano, 2015. 9(5): p. 5618-5624. [175] Y. Wang, et al., Novel intercalated CuO/black phosphorus nanocomposites: Fabrication, characterization and NO2 gas sensing at room temperature. Materials Science in Semiconductor Processing, 2020. 110: p. 104961. [176] Y. Liu, et al., Facile Synthesis of Highly Dispersed Co3O4 Nanoparticles on Expanded, Thin Black Phosphorus for a ppb-Level NOx Gas Sensor. ACS Sensors, 2018. 3(8): p. 1576-1583. [177] T. Liang, et al., Suppression of Sn2+ and Lewis acidity in SnS2/black phosphorus heterostructure for ppb-level room temperature NO2 gas sensor. Science Bulletin, 2021. 66(24): p. 2471-2478. [178] Q. Li, et al., Zinc oxide–black phosphorus composites for ultrasensitive nitrogen dioxide sensing. Nanoscale Horizons, 2018. 3(5): p. 525-531. [179] Y.H. Pai and C.H. Chen, Long-term can-sealing protection: a stable black phosphorus nanoassembly achieved through heterogeneous hydrophobic functionalization. Nanoscale, 2021. 13(2): p. 763-775. [180] J. Miao, et al., Air-Stable Humidity Sensor Using Few-Layer Black Phosphorus. ACS Applied Materials & Interfaces, 2017. 9(11): p. 10019-10026. [181] J. Li, et al., Improving Humidity Sensing of Black Phosphorus Nanosheets by Co-Doping Benzyl Viologen and Au Nanoparticles. Journal of The Electrochemical Society, 2022. 169(1): p. 017513. [182] M. Valt, et al., Air Stable Nickel-Decorated Black Phosphorus and Its Room-Temperature Chemiresistive Gas Sensor Capabilities. ACS Applied Materials & Interfaces, 2021. 13(37): p. 44711-44722. [183] K. Arshak, et al., A review of gas sensors employed in electronic nose applications. Sensor review, 2004. [184] W.H. Brattain and J. Bardeen, Surface properties of germanium. The Bell System Technical Journal, 1953. 32(1): p. 1-41. [185] T. Seiyama, et al., A new detector for gaseous components using semiconductive thin films. Analytical Chemistry, 1962. 34(11): p. 1502-1503. [186] S. Supothina, Gas sensing properties of nanocrystalline SnO2 thin films prepared by liquid flow deposition. Sensors and Actuators B: Chemical, 2003. 93(1-3): p. 526-530. [187] N.G. Patel, K.K. Makhija, and C.J. Panchal, Fabrication of carbon dioxide gas sensor and its alarm system using indium tin oxide (ITO) thin films. Sensors and Actuators B: Chemical, 1994. 21(3): p. 193-197. [188] N. Kaur, M. Singh, and E. Comini, One-Dimensional Nanostructured Oxide Chemoresistive Sensors. Langmuir, 2020. 36(23): p. 6326-6344. [189] N. Donato, M. Latino, and G. Neri, Novel carbon nanotubes-based hybrid composites for sensing applications. 2011, InTech. [190] K.D. Schierbaum, et al., Conductance, work function and catalytic activity of SnO2-based gas sensors. Sensors and Actuators B: Chemical, 1991. 3(3): p. 205-214. [191] Y. Hu, et al., Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts. Advanced Materials, 2010. 22(30): p. 3327-3332. [192] F. Lu, et al., Nanosized tin oxide as the novel material with simultaneous detection towards CO, H2 and CH4. Sensors and Actuators B: Chemical, 2000. 66(1-3): p. 225-227. [193] A. Rothschild and Y. Komem, The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. Journal of Applied Physics, 2004. 95(11): p. 6374-6380. [194] J.H. Lee, Gas sensors using hierarchical and hollow oxide nanostructures: overview. Sensors and Actuators B: Chemical, 2009. 140(1): p. 319-336. [195] Q. Qi, et al., Electrical response of Sm2O3-doped SnO2 to C2H2 and effect of humidity interference. Sensors and Actuators B: Chemical, 2008. 134(1): p. 36-42. [196] J. Gong, et al., Micromachined nanocrystalline silver doped SnO2 H2S sensor. Sensors and Actuators B: Chemical, 2006. 114(1): p. 32-39. [197] M. Egashira, et al., Temperature programmed desorption study of water adsorbed on metal oxides. I. Anatase and rutile. Bulletin of the Chemical Society of Japan, 1978. 51(11): p. 3144-3149. [198] Z. Jing and J. Zhan, Fabrication and gas‐sensing properties of porous ZnO nanoplates. Advanced Materials, 2008. 20(23): p. 4547-4551. [199] A. Kolmakov, et al., Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano letters, 2005. 5(4): p. 667-673. [200] Y. Lu, et al., Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chemical Physics Letters, 2004. 391(4-6): p. 344-348. [201] D. Wang, et al., Low-temperature synthesis of tunable mesoporous crystalline transition metal oxides and applications as Au catalyst supports. The Journal of Physical Chemistry C, 2008. 112(35): p. 13499-13509. [202] Y. Shimizu, et al., Improvement of SO2 sensing properties of WO3 by noble metal loading. Sensors and Actuators B: Chemical, 2001. 77(1-2): p. 35-40. [203] A.M. Ruiz, et al., Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sensors and Actuators B: Chemical, 2005. 108(1-2): p. 34-40. [204] C.R. Henry, C. Chapon, and C. Duriez, Precursor state in the chemisorption of CO on supported palladium clusters. The Journal of chemical physics, 1991. 95(1): p. 700-705. [205] J. Liu, et al., Novel porous single-crystalline ZnO nanosheets fabricated by annealing ZnS(en)0.5(en = ethylenediamine) precursor. Application in a gas sensor for indoor air contaminant detection. Nanotechnology, 2009. 20(12): p. 125501. [206] H.B. Ribeiro, M.A. Pimenta, and J.S. Christiano, Raman spectroscopy in black phosphorus. Journal of Raman Spectroscopy, 2018. 49(1): p. 76-90. [207] S. Sugai and I. Shirotani, Raman and infrared reflection spectroscopy in black phosphorus. Solid State Communications, 1985. 53(9): p. 753-755. [208] Z. Zhang, et al., Two-step heating synthesis of sub-3 millimeter-sized orthorhombic black phosphorus single crystal by chemical vapor transport reaction method. Science China Materials, 2016. 59(2): p. 122-134. [209] M. Zhao, et al., Understanding the growth of black phosphorus crystals. CrystEngComm, 2016. 18(40): p. 7737-7744. [210] Z. Zhang, et al., Hittorf's phosphorus: the missing link during transformation of red phosphorus to black phosphorus. CrystEngComm, 2017. 19(6): p. 905-909. [211] W. Li, et al., Phosphorene Nanosheets Exfoliated from Low-Cost and High-Quality Black Phosphorus for Hydrogen Evolution. ACS Applied Nano Materials, 2020. 3(8): p. 7508-7515. [212] F.E. Manjli, et al., From amorphous red phosphorus to black phosphorus crystal: Anoptimization, controllable and highest yield synthesis process. Journal of Crystal Growth, 2022. 577(1): p. 126408. [213] N. Mao, et al., Lattice Vibration and Raman Scattering in Anisotropic Black Phosphorus Crystals. Small Methods, 2018. 2(6): p. 1700409. [214] G. Abellán, et al., Fundamental Insights into the Degradation and Stabilization of Thin Layer Black Phosphorus. Journal of the American Chemical Society, 2017. 139(30): p. 10432-10440. [215] F. Alsaffar, et al., Raman Sensitive Degradation and Etching Dynamics of Exfoliated Black Phosphorus. Scientific Reports, 2017. 7(1): p. 44540. [216] S. Wu, et al., Black Phosphorus: Degradation Favors Lubrication. Nano Letters, 2018. 18(9): p. 5618-5627.
|