跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 16:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王凱誼
研究生(外文):Wang, Kai-Yi
論文名稱:探討海馬回中苔狀細胞所調控之抗焦慮效應的神經迴路機制
論文名稱(外文):Interrogating the Circuit Mechanisms Underlying Hippocampal Hilar Mossy Cell-Mediated Anxiolytic Effects
指導教授:連正章
指導教授(外文):Lien, Cheng-Chang
口試委員:林士傑閔明源李立仁黃國正
口試委員(外文):Lin, Shih-ChiehMin, Ming-YuanLee, Li-JenHuang, Guo-Jen
口試日期:2021-11-23
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:110
中文關鍵詞:γ-氨基丁酸齒狀回苔狀細胞焦慮迴避行為
外文關鍵詞:GABADentate gyrusMossy cellAnxietyAvoidance behavior
相關次數:
  • 被引用被引用:0
  • 點閱點閱:244
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:1
在哺乳類動物中,適度的表現及控制情緒對生命的延續是很關鍵的。焦慮症是一種失常的情緒表現,與腦神經迴路中的興奮及抑制訊號失衡有關。近期的研究顯示,在腦中降低γ-氨基丁酸在神經迴路中的抑制作用及提升海馬回的活性常會伴隨過度焦慮之情緒反應。具體來說,調節海馬回中齒狀回的興奮性,可以調控個體的焦慮程度。苔狀細胞為位於齒狀回門區中的麩胺酸神經元(興奮性神經元),會接受來自齒狀回中顆粒細胞的興奮性訊號,並透過回饋興奮及回饋抑制作用來調節顆粒細胞的活性。然而苔狀細胞的活性與個體焦慮程度間的相關性,以及苔狀細胞是透過何種神經機制將焦慮相關訊息傳遞到其他海馬回次核區,仍有待釐清。在此論文中,我從神經網絡到系統性的階層,探討齧齒類動物中的苔狀細胞是如何調控焦慮行為。首先,我利用光纖光度技術偵測自由活動小鼠中苔狀細胞鈣離子活性的變化。結果顯示,腹側海馬回中苔狀細胞的鈣離子活性會在老鼠探索較為焦慮的環境時上升。此外,進一步分析發現苔狀細胞的活性與老鼠內在焦慮程度呈負相關。接著,以光遺傳學活化苔狀細胞的同時結合活體近細胞記錄,我發現苔狀細胞偏好於活化γ-氨基丁酸抑制性神經元,因而抑制齒狀回中顆粒細胞及海馬回CA1次核區錐狀細胞的神經活性。最後,不論是在健康還是高焦慮的小鼠模型中,利用化學遺傳學活化腹側海馬回中的苔狀細胞都能有效地降低實驗老鼠的躲避行為。此項研究結果不僅表明苔狀細胞的抗焦慮角色,也暗示著苔狀細胞在焦慮症治療上可能是有潛力的治療標靶。
Expression and control of emotion is pivotal for survival in mammalians. Malfunctions such as anxiety disorders are associated with excitation/inhibition imbalance in brain network activity. Recently, studies have revealed that reduced γ-aminobutyric acid (GABA)-mediated inhibition and enhanced hippocampal network activity result in hyper-anxiety. Specifically, modulation of hippocampal dentate gyrus (DG) excitability regulates anxiety. In the DG, glutamatergic mossy cells (MCs) receive the excitatory drive from principal granule cells (GCs) and mediate feedback excitation and inhibition of GCs. However, the circuit mechanism by which MCs regulate anxiety-related information routing through hippocampal circuits remains unknown. Moreover, the correlation between MC activity and anxiety states is unclear. In this thesis, I examined the functional roles of rodent MCs in anxiety regulation from network to systemic levels. Using calcium fiber photometry in freely-moving mice, I first demonstrated that the calcium activity of MCs in the mouse ventral hippocampus increased while they explored anxiogenic environments. Further analysis showed the negative correlation between MC activity and innate anxiety level of mice. Next, in vivo juxtacellular recordings revealed that optogenetic activation of MCs preferentially recruited GABAergic neurons, thereby suppressing GCs and ventral CA1 neurons in the hippocampal circuitry. Finally, chemogenetic excitation of MCs in the ventral hippocampus reduced avoidance behaviors in both healthy and anxious mice. These results not only indicate an anxiolytic role of MCs, but also suggest that MCs may be a potential therapeutic target for anxiety disorders.
中文摘要 i
ABSTRACT ii
GRAPHICAL ABSTRACT AND HIGHLIGHTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES viii
ABBREVIATIONS ix
1. INTRODUCTION 1
1.1. The network of hippocampal formation 1
1.1.a. The hippocampus 1
1.1.b. The dentate gyrus subregion 2
1.1.c. The CA1 subregion 4
1.2. The function of hippocampal formation 5
1.2.a. The hippocampal functions 5
1.2.b. The functions of dentate gyrus 7
1.2.c. The CA1 functions 8
1.3. The hilar mossy cell in the hippocampal DG 9
1.3.a. Discovery of mossy cells and their characteristics 9
1.3.b. Physiological properties of MCs 10
1.3.c. Input-output organization of MCs 11
1.3.d. Functions of MCs 12
1.4. Anxiety disorder and measurement of avoidance behaviors in rodents 14
2. AIMS OF THIS THESIS 16
2.1. Aim1. To investigate if MCs encode anxiety-related information. 16
2.2. Aim2. To examine the circuit mechanism underlying MC activation. 16
2.3. Aim3. Functional interrogation of the roles of MCs in avoidance behaviors. 17
3. MATERIALS AND METHODS 18
3.1. Experimental Models and Subject Details 18
3.1.a. Animal model 18
3.1.b. Fibromyalgia model 18
3.2 Method Details 18
3.2.a. Viruses 18
3.2.b. Stereotaxic injection 19
3.2.c. Fiber optic implantation 20
3.2.d. In vivo fiber photometry 20
3.2.e. Behavioral tests 21
3.2.f. In vivo juxtacellular recording 23
3.2.g. Slice preparation and patch-clamp recording 24
3.2.h. Solutions and drugs 25
3.2.i. Immunohistochemistry and histology 26
3.3 Quantification and Statistical Aanalysis 27
4. RESULTS 29
4.1. Majority of viral-expressing MCs are GluR2/3 immunoreactive 29
4.2. MC activity increased during open-arm exploration 29
4.3. MC activation recruited GABAergic INs and suppressed GCs 31
4.4. Optogenetic activation of MCs suppressed CA1 PCs 33
4.5. Elevating ventral MC activity decreased avoidance behaviors 33
4.6. Decreasing ventral MC activity had no impact on avoidance behaviors 34
4.7. Dorsal MCs did not participate in mediating avoidance behaviors 36
4.8. Elevating MC activity decreased avoidance behaviors in chronic pain 37
4.9. Gating model for MC-mediated anxiolytic effects 39
5. DISCUSSION 40
5.1. Summary 40
5.2. Potential explanation of the discrepancy in observation and manipulation results 40
5.3. Limitation of fiber photometry measurement and data interpretation 41
5.4. Relevance of GABAergic transmission to MC-mediated anxiolytic effects 42
5.5. Potential network mechanisms of CA1 outputs control on avoidance behaviors 43
5.6. Pathway-specific subcortical neuromodulatory drives for MC activation 44
5.7. Morphological, physiological, and functional dichotomy between dorsal and ventral MCs 45
5.8. MC-mediated anxiety regulation and hippocampal oscillations 46
5.9. Parallel pathways gating the anxiety representation in the ventral CA1 47
5.10. Minimum effect of environmental novelty-induced MC activity changes in the EPM test 48
5.11. Implication of adult neurogenesis in MC-mediated anxiolytic effects 49
6. FIGURES AND TABLES 51
6.1. Figure 1. Wiring diagrams of the hippocampus and hippocampal DG. 51
6.2. Figure 2. Anatomical and physiological properties of MCs. 52
6.3. Figure 3. Majority of viral-expressing MCs in Crlr-Cre mouse are GluR2/3 immunoreactive. 54
6.4. Figure 4. Increased MC activity during open-arm exploration. 55
6.5. Figure 5. Activity of ventral MCs did not correlate with locomotion speed. 57
6.6. Figure 6. Increased MC activity during open-arm exploration the EZM and modified EPM tests. 59
6.7. Figure 7. MC activation recruited GABAergic INs and suppressed GCs. 61
6.8. Figure 8. Light stimulation alone did not show off-target effects. 64
6.9. Figure 9. Optogenetic activation of MCs suppressed CA1 PCs. 65
6.10. Figure 10. Optogenetic activation of MCs suppressed CA1 PCs in awake mice. 66
6.11. Figure 11. Elevating ventral MC activity decreased avoidance behaviors. 67
6.12. Figure 12. Chemogenetic inhibition of ventral MCs had no effect on avoidance behaviors. 69
6.13. Figure 13. Optogenetic inhibition of ventral MCs had no effect on avoidance behaviors. 70
6.14. Figure 14. Either chemogenetic activation or inhibition of dorsal MCs had little effect on avoidance behaviors. 72
6.15. Figure 15. A FM-like mouse model displayed comorbid anxiety. 74
6.16. Figure 16. Enhancing MC activity alleviated heightened avoidance behavior in chronic pain. 75
6.17. Figure 17. MC gates in anxiety-related information routing along hippocampal circuits. 77
6.18. Table 1. MC activation on avoidance behaviors of male and female mice. 78
6.19. Table 2. Resources table 79
7. SUPPLEMENTARY FIGURES 81
7.1. Figure S1. Similar results obtained from different serotypes of viruses. 81
7.2. Figure S2. Increased MC activity during open-arm exploration in five consecutive EPM tests. 82
8. REFERENCES 84
CURRICULUM VITAE 107
Adhikari, A., Topiwala, M.A., and Gordon, J.A. (2010). Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65, 257-269.

Ajibola, M.I., Wu, J.W., Abdulmajeed, W.I., and Lien, C.C. (2021). Hypothalamic glutamate/GABA cotransmission modulates hippocampal circuits and supports long-term potentiation. J. Neurosci. 41, 8181-8196.

Albrecht, A., Çalışkan, G., Oitzl, M.S., Heinemann, U., and Stork, O. (2013). Long-lasting increase of corticosterone after fear memory reactivation: anxiolytic effects and network activity modulation in the ventral hippocampus. Neuropsychopharmacology 38, 386-394.

Allsop, S.A., Vander Weele, C.M., Wichmann, R., and Tye, K.M. (2014). Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Front. Behav. Neurosci. 8, 241.

Amaral, D.G. (1978). A Golgi study of cell types in the hilar region of the hippocampus in the rat. J. Comp. Neurol. 182, 851-914.

Amaral, D.G., and Kurz, J. (1985). An analysis of the origins of the cholinergic and noncholinergic septal projections to the hippocampal formation of the rat. J. Comp. Neurol. 240, 37-59.

Amaral, D.G., Lavenex, P. (2007). Hippocampal neuroanatomy. In The Hippocampus Book, P. Andersen, R. Morris, D. Amaral, T. Bliss, J. O'Keefe, eds. (Oxford University Press) pp. 37.

Amaral, D.G., Scharfman, H.E., and Lavenex, P. (2007). The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog. Brain Res. 163, 3-22.

Ambrogi Lorenzini, C., Bucherelli, C., and Giachetti, A. (1984). Passive and active avoidance behavior in the light-dark box test. Physiol. Behav. 32, 687-689.

Anacker, C., and Hen, R. (2017). Adult hippocampal neurogenesis and cognitive flexibility – linking memory and mood. Nat. Rev. Neurosci. 18, 335-346.

Anacker, C., Luna, V.M., Stevens, G.S., Millette, A., Shores, R., Jimenez, J.C., Chen, B., and Hen, R. (2018). Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 559, 98-102.

Andersen, P., Bliss, T.V.P., and Skrede, K.K. (1971). Lamellar organization of hippocampal excitatory pathways. Exp. Brain Res. 13, 222-238.

Azevedo, E.P., Pomeranz, L., Cheng, J., Schneeberger, M., Vaughan, R., Stern, S.A., Tan, B., Doerig, K., Greengard, P., and Friedman, J.M. (2019). A role of Drd2 hippocampal neurons in context-dependent food intake. Neuron 102, 873-886.

Banasr, M., Soumier, A., Hery, M., Mocaër, E., and Daszuta, A. (2006). Agomelatine, a new antidepressant, induces regional changes in hippocampal neurogenesis. Biol. Psychiatry 59, 1087-1096.

Bannerman, D.M., Deacon, R.M., Offen, S., Friswell, J., Grubb, M., and Rawlins, J.N. (2002). Double dissociation of function within the hippocampus: spatial memory and hyponeophagia. Behav. Neurosci. 116, 884-901.

Bannerman, D.M., Grubb, M., Deacon, R.M., Yee, B.K., Feldon, J., and Rawlins, J.N. (2003). Ventral hippocampal lesions affect anxiety but not spatial learning. Behav. Brain Res. 139, 197-213.

Bannerman, D.M., Sprengel, R., Sanderson, D.J., McHugh, S.B., Rawlins, J.N., Monyer, H., and Seeburg, P.H. (2014). Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 15, 181-192.

Barkus, C., McHugh, S.B., Sprengel, R., Seeburg, P.H., Rawlins, J.N., Bannerman, D.M. (2010). Hippocampal NMDA receptors and anxiety: at the interface between cognition and emotion. Eur. J. Pharmacol. 626, 49-56.

Barr, J.L., Bray, B., and Forster, G.L. (2017). The hippocampus as a neural link between negative affect and vulnerability for psychostimulant relapse. In The hippocampus: Plasticity and functions, A. Stuchlik, ed. (IntechOpen), pp. 127-167.

Barto, A., Mirolli, M., and Baldassarre, G. (2013). Novelty or surprise? Front. Psychol. 4, 907.

Bazelot, M., Bocchio, M., Kasugai, Y., Fischer, D., Dodson, P.D., Ferraguti, F., and Capogna, M. (2015). Hippocampal theta input to the amygdala shapes feedforward inhibition to gate heterosynaptic plasticity. Neuron 87, 1290-1303.

Belzung, C., and Griebel G. (2001). Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141-149.

Bernstein, H.L., Lu, Y.L., Botterill, J.J., and Scharfman, H.E. (2019). Novelty and novel objects increase c-Fos immunoreactivity in mossy cells in the mouse dentate gyrus. Neural Plast. 2019, 1815371.

Bilkey, D.K., and Goddard, G.V. (1987). Septohippocampal and commissural pathways antagonistically control inhibitory interneurons in the dentate gyrus. Brain Res. 405, 320-325.

Bir, S.C., Ambekar, S., Kukreja, S., and Nanda, A. (2015). Julius Caesar Arantius (Giulio Cesare Aranzi, 1530-1589) and the hippocampus of the human brain: history behind the discovery. J. Neurosurg. 122, 971-975.

Blackburn-Munro, G., and Jensen, B.S. (2003). The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur. J. Pharmacol. 460, 109-116.

Blasco-Ibáñez, J.M., and Freund, T.F. (1997). Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus. Hippocampus 7, 307-320.

Boldrini, M., Underwood, M.D., Hen, R., Rosoklija, G.B., Dwork, A.J., John Mann, J., and Arango, V. (2009). Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 34, 2376-2389.

Bonne, O., Vythilingam, M., Inagaki, M., Wood, S., Neumeister, A., Nugent, A.C., Snow, J., Luckenbaugh, D.A., Bain, E.E., Drevets, W.C., and Charney, D.S. (2008). Reduced posterior hippocampal volume in posttraumatic stress disorder. J. Clin. Psychiatry 69, 1087–1091.

Bonthius, D.J., McKim, R., Koele, L., Harb, H., Karacay, B., Mahoney, J., and Pantazis, N.J. (2004). Use of frozen sections to determine neuronal number in the murine hippocampus and neocortex using the optical disector and optical fractionator. Brain Res. Brain Res. Protoc. 14, 45-57.

Booker, S.A., and Vida, I. (2018). Morphological diversity and connectivity of hippocampal interneurons. Cell Tissue Res. 373, 619-641.

Borsini, F., Podhorna, J., and Marazziti, D. (2002). Do animal models of anxiety predict anxiolytic-like effects of antidepressants? Psychopharmacology (Berl). 163, 121-141.

Botterill, J.J., Lu, Y.L., LaFrancois, J.J., Bernstein, H.L., Alcantara-Gonzalez, D., Jain, S., Leary, P., and Scharfman, H.E. (2019). An excitatory and epileptogenic effect of dentate gyrus mossy cells in a mouse model of epilepsy. Cell Rep. 29, 2875-2889.e6.

Botterill, J.J., Vinod, K.Y., Gerencer, K.J., Teixeira, C.M., LaFrancois, J.J., and Scharfman, H.E. (2021). Bidirectional regulation of cognitive and anxiety-like behaviors by dentate gyrus mossy cells in male and female mice. J. Neurosci. 41, 2475-2495.

Buckmaster, P.S., Wenzel, H.J., Kunkel, D.D., Schwartzkroin, P.A. (1996). Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J. Comp. Neurol. 366, 271-292.

Bui, A.D., Nguyen, T.M., Limouse, C., Kim, H.K., Szabo, G.G., Felong, S., Maroso, M., and Soltesz, I. (2018). Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science 359, 787-790.

Bushnell, M.C., Ceko, M., and Low, L.A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nat. Rev. Neurosci. 14, 502-511.

Buzsáki, G., and Czéh, G. (1981). Commissural and perforant path interactions in the rat hippocampus. Field potentials and unitary activity. Exp. Brain Res. 43, 429-438.

Buzsàki, G., and Eidelberg, E. (1981). Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res. 230, 346-350.

Buzsáki, G. (2015). Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus. 25, 1073-1188.

Calhoon, G.G., and Tye, K.M. (2015). Resolving the neural circuits of anxiety. Nat. Neurosci. 18, 1394-1404.

Çalışkan, G., and Stork, O. (2018). Hippocampal network oscillations as mediators of behavioural metaplasticity: Insights from emotional learning. Neurobiol. Learn. Mem. 154, 37-53.

Canto, C.B., Wouterlood, F.G., and Witter, M.P. (2008). What does the anatomical organization of the entorhinal cortex tell us? Neural Plast. 2008, 381243.

Cembrowski, M.S., Wang, L., Sugino, K., Shields, B.C., and Spruston, N. (2016). Hipposeq: a comprehensive RNA-seq database of gene expression in hippocampal principal neurons. eLife 5, e14997.

Chancey, J.H., Poulsen, D.J., Wadiche, J.I., and Overstreet-Wadiche, L. (2014). Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J. Neurosci. 34, 2349-2354.

Chawla, M.K., Guzowski, J.F., Ramirez-Amaya, V., Lipa, P., Hoffman, K.L., Marriott, L.K., Worley, P.F., McNaughton, B.L., and Barnes, C.A. (2005). Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15, 579-586.

Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., Looger, L.L., Svoboda, K., and Kim, D.S. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295-300.

Christian, K.M., Song, H., and Ming, G.L. (2014). Functions and dysfunctions of adult hippocampal neurogenesis. Annu. Rev. Neurosci. 37, 243-262.

Ciocchi, S., Passecker, J., Malagon-Vina, H., Mikus, N., and Klausberger, T. (2015). Brain computation. Selective information routing by ventral hippocampal CA1 projection neurons. Science 348, 560-563.

Clark, R.E., and Squire, L.R. (2013). Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proc. Natl. Acad. Sci. U. S. A. 110, 10365-10370.

Craske, M.G., Stein, M.B., Eley, T.C., Milad, M.R., Holmes, A., Rapee, R.M., and Wittchen, H.U. (2017). Anxiety disorders. Nat. Rev. Dis. Primers 3, 17024.

Cryan, J.F., and Holmes, A. (2005). The ascent of mouse: advances in modelling human depression and anxiety. Nat. Rev. Drug Discov. 4, 775-790.

Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A., and Buzsáki, G. (1999). Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving rat. J. Neurosci. 19, 274-287.

Danielson, N.B., Kaifosh, P., Zaremba, J.D., Lovett-Barron, M., Tsai, J., Denny, C.A., Balough, E.M., Goldberg, A.R., Drew, L.J., Hen, R., Losonczy, A., and Kheirbek, M.A. (2016). Distinct contribution of adult-born hippocampal granule cells to context encoding. Neuron 90, 101-112.

Danielson, N.B., Turi, G.F., Ladow, M., Chavlis, S., Petrantonakis, P.C., Poirazi, P., and Losonczy, A. (2017). In Vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron 93, 552-559.e4.

Deller, T., Martinez, A., Nitsch, R., and Frotscher, M. (1996). A novel entorhinal projection to the rat dentate gyrus: direct innervation of proximal dendrites and cell bodies of granule cells and GABAergic neurons. J. Neurosci. 16, 3322-3333.

Deller, T., Katona, I., Cozzari, C., Frotscher, M., and Freund, T.F. (1999). Cholinergic innervation of mossy cells in the rat fascia dentata. Hippocampus 9, 314-320.

DeSantana, J.M., da Cruz, K.M., and Sluka, K.A. (2013). Animal models of fibromyalgia. Arthritis Res. Ther. 15, 222.

Diamantaki, M., Frey, M., Berens, P., Preston-Ferrer, P., and Burgalossi, A. (2016). Sparse activity of identified dentate granule cells during spatial exploration. eLife 5, e20252.

Diehl, G.W., Hon, O.J., Leutgeb, S., and Leutgeb, J.K. (2017). Grid and nongrid cells in medial entorhinal cortex represent spatial location and environmental features with complementary coding schemes. 94, 83-92.e6.

Dieni, C.V., Nietz, A.K., Panichi, R., Wadiche, J.I., and Overstreet-Wadiche, L. (2013). Distinct determinants of sparse activation during granule cell maturation. J. Neurosci. 33, 19131-19142.

Dong, Z., Chen, W., Chen, C., Wang, H., Cui, W., Tan, Z., Robinson, H., Gao, N., Luo, B., Zhang, L., Zhao, K., Xiong, W.C., and Mei, L. (2020). CUL3 deficiency causes social deficits and anxiety-like behaviors by impairing excitation-inhibition balance through the promotion of Cap-dependent translation. Neuron 105, 475-490.e6.

Duffy, A.M., Schaner, M.J., Chin, J., and Scharfman, H.E. (2013). Expression of c-Fos in hilar mossy cells of the dentate gyrus in vivo. Hippocampus 23, 649-655.

Dunkley, B.T., Doesburg, S.M., Jetly, R., Sedge, P.A., Pang, E.W., and Taylor, M.J. (2015). Characterising intra- and inter-intrinsic network synchrony in combat-related post-traumatic stress disorder. Psychiatry Res. 234, 172-181.

Engin, E., Smith, K.S., Gao, Y., Nagy, D., Foster, R.A., Tsvetkov, E., Keist, R., Crestani, F., Fritschy, J.M., Bolshakov, V.Y., Hajos, M., Heldt, S.A., and Rudolph, U. (2016). Modulation of anxiety and fear via distinct intrahippocampal circuits. eLife 5, e14120.

Etter, G., and Krezel, W. (2014). Dopamine D2 receptor controls hilar mossy cells excitability. Hippocampus 24, 725-732.

Ewell, L.A., and Jones, M.V. (2010). Frequency-tuned distribution of inhibition in the dentate gyrus. J. Neurosci. 30, 12597-12607.

Fanselow, M.S., and Dong, H.W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron 65, 7-19.

Felix-Ortiz, A.C., Beyeler, A., Seo, C., Leppla, C.A., Wildes, C.P., and Tye, K.M. (2013). BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 79, 658-664.

Fenker, D.B., Frey, J.U., Schuetze, H., Heipertz, D., Heinze, H.J., and Duzel, E. (2008). Novel scenes improve recollection and recall of words. J. Cogn. Neurosci. 20, 1250-1265.

Frazier, C.J., Strowbridge, B.W., and Papke, R.L. (2003). Nicotinic receptors on local circuit neurons in dentate gyrus: a potential role in regulation of granule cell excitability. J. Neurophysiol. 89, 3018-3028.

Fredes, F., Silva, M.A., Koppensteiner, P., Kobayashi, K., Joesch, M., and Shigemoto, R. (2021). Ventro-dorsal hippocampal pathway gates novelty-induced contextual memory formation. Curr. Biol. 31, 25-38.e5.

Fredes, F., and Shigemoto, R. (2021). The role of hippocampal mossy cells in novelty detection. Neurobiol. Learn Mem. 183, 107486.

Freund, T.F., and Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus 6, 347-470.

Frey, B.N., Andreazza, A.C., Nery, F.G., Martins, M.R., Quevedo, J., Soares, J.C., and Kapczinski, F. (2007). The role of hippocampus in the pathophysiology of bipolar disorder. Behav. Pharmacol. 18, 419-430.

Fujise, N., and Kosaka, T. (1999). Mossy cells in the mouse dentate gyrus: identification in the dorsal hilus and their distribution along the dorsoventral axis. Brain Res. 816, 500-511.

Fujise, N., Liu, Y., Hori, N., and Kosaka, T. (1998). Distribution of calretinin immunoreactivity in the mouse dentate gyrus: II. Mossy cells, with special reference to their dorsoventral difference in calretinin immunoreactivity. Neuroscience 82, 181-200.

Gangarossa, G., Longueville, S., De Bundel, D., Perroy, J., Hervé, D., Girault, J.A., Valjent, E. (2012). Characterization of dopamine D1 and D2 receptor-expressing neurons in the mouse hippocampus. Hippocampus 22, 2199-2207.

Gehrlach, D.A., Dolensek, N., Klein, A.S., Roy Chowdhury, R., Matthys, A., Junghänel, M., Gaitanos, T.N., Podgornik, A., Black, T.D., Reddy Vaka, N., Conzelmann, K.K., and Gogolla, N. (2019). Aversive state processing in the posterior insular cortex. Nat. Neurosci. 22, 1424-1437.

Gergues, M.M., Han, K.J., Choi, H.S., Brown, B., Clausing, K.J., Turner, V.S., Vainchtein, I.D., Molofsky, A.V., and Kheirbek, M.A. (2020). Circuit and molecular architecture of a ventral hippocampal network. Nat. Neurosci. 23, 1444-1452.

Gagne, C., Dayan, P., and Bishop, S.J. (2018). When planning to survive goes wrong: predicting the future and replaying the past in anxiety and PTSD. Curr. Opin. Behav. Sci. 24, 89-95.

Gilbert, P.E., Kesner, R.P., and Lee, I. (2001). Dissociating hippocampal subregions: double dissociation between dentate gyrus and CA1. Hippocampus 11, 626-636.

Gillespie, C.F., Phifer, J., Bradley, B., and Ressler, K.J. (2009). Risk and resilience: genetic and environmental influences on development of the stress response. Depress. Anxiety 26, 984-992.

GoodSmith, D., Chen, X., Wang, C., Kim, S.H., Song, H., Burgalossi, A., Christian, K.M., and Knierim, J.J. (2017). Spatial representations of granule cells and mossy cells of the dentate gyrus. Neuron 93, 677-690.e5.

Grisham, W., Greta, S., Schottler, N., Tomita, W., Burre, A., Rostamian, D., Pishchalenko, O., and Thomas, S.T. (2020). Brain volume fractions in mammals in relation to behavior in carnivores, primates, ungulates, and rodents. Brain Behav. Evol. 95, 102-112.

Guiard, B.P., Di Giovanni, G. (2015). Central serotonin-2A (5-HT2A) receptor dysfunction in depression and epilepsy: the missing link? Front. Pharmacol. 17, 6:46.

Hainmueller, T., and Bartos, M. (2018). Parallel emergence of stable and dynamic memory engrams in the hippocampus. Nature 558, 292-296.

Hainmueller, T., and Bartos, M. (2020). Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat. Rev. Neurosci. 21, 153-168.

Hansen, N., and Manahan-Vaughan, D. (2015). Locus coeruleus stimulation facilitates long-term depression in the dentate gyrus that requires activation of β-adrenergic receptors. Cereb. Cortex 25, 1889-1896.

Hao, J.X., Xu, I.S., Xu, X.J., and Wiesenfeld-Hallin, Z. (1999). Effects of intrathecal morphine, clonidine and baclofen on allodynia after partial sciatic nerve injury in the rat. Acta Anaesthesiol. Scand. 43, 1027-1034.

Hashimotodani, Y., Nasrallah, K., Jensen, K.R., Chávez, A.E., Carrera, D., Castillo, P.E. (2017). LTP at hilar mossy cell-dentate granule cell synapses modulates dentate gyrus output by increasing excitation/inhibition balance. Neuron 95, 928-943.e3.

Henze, D.A., and Buzsáki, G. Hilar mossy cells: functional identification and activity in vivo. (2007). Prog. Brain Res. 163, 199-216.

Henze, D.A., Urban, N.N., and Barrionuevo, G. (2000). The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98, 407-427.

Hinman, J.R., Penley, S.C., Long, L.L., Escabí, M.A., Chrobak, J.J. (2011). Septotemporal variation in dynamics of theta: speed and habituation. J. Neurophysiol. 105, 2675-2686.

Hjorth-Simonsen, A. (1972). Projection of the lateral part of the entorhinal area to the hippocampus and fascia dentata. J. Comp. Neurol. 146, 219-232.

Hjorth-Simonsen, A., and Jeune, B. (1972). Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation. J. Comp. Neurol. 144, 215-232.

Hofmann, M.E., Nahir, B., and Frazier, C.J. (2006). Endocannabinoid-mediated depolarization-induced suppression of inhibition in hilar mossy cells of the rat dentate gyrus. J. Neurophysiol. 96, 2501-2512.

Hofmann, M.E., and Frazier, C.J. (2010). Muscarinic receptor activation modulates the excitability of hilar mossy cells through the induction of an afterdepolarization. Brain Res. 1318, 42-51.

Hosp, J.A., Strüber, M., Yanagawa, Y., Obata, K., Vida, I., Jonas, P., and Bartos, M. (2014) Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 24, 189-203.

Houser, C.R., Peng, Z., Wei, X., Huang, C.S., and Mody, I. (2021). Mossy cells in the dorsal and ventral dentate gyrus differ in their patterns of axonal projections. J. Neurosci. 41, 991-1004.

Hsu, T.T., Lee, C.T., Tai, M.H., and Lien, C.C. (2016). Differential recruitment of dentate gyrus interneuron types by commissural versus perforant pathways. Cereb. Cortex 26, 2715-2727.

Hunsaker, M.R., Rosenberg, J.S., and Kesner, R.P. (2008). The role of the dentate gyrus, CA3a,b, and CA3c for detecting spatial and environmental novelty. Hippocampus 18, 1064-1073.

Insausti, R., and Amaral, D.G. (2004). Hippocampal formation. In The human nervous system, 2nd ed, G. Paxinos, K.J. Mai, eds. (Elsevier) pp. 872-915.

Jiang, Y.Y., Zhang, Y., Cui, S., Liu, F.Y., Yi, M., and Wan, Y. (2018). Cholinergic neurons in medial septum maintain anxiety-like behaviors induced by chronic inflammatory pain. Neurosci. Lett. 671, 7-12.

Jimenez, J.C., Su, K., Goldberg, A.R., Luna, V.M., Biane, J.S., Ordek, G., Zhou, P., Ong, S.K., Wright, M.A., Zweifel, L., Paninski, L., Hen, R., and Kheirbek, M.A. (2018). Anxiety cells in a hippocampal-hypothalamic circuit. Neuron 97, 670-683.

Jin, J., and Maren, S. (2015). Fear renewal preferentially activates ventral hippocampal neurons projecting to both amygdala and prefrontal cortex in rats. Sci. Rep. 5, 8388.

Jinde, S., Zsiros, V., Jiang, Z., Nakao, K., Pickel, J., Kohno, K., Belforte, J.E., and Nakazawa, K. (2012). Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76, 1189-1200.

Jing, M., Li, Y., Zeng, J., Huang, P., Skirzewski, M., Kljakic, O., Peng, W., Qian, T., Tan, K., Zou, J., Trinh, S., Wu, R., Zhang, S., Pan, S., Hires, S.A., Xu, M., Li, H., Saksida, L.M., Prado, V.F., Bussey, T.J., Prado, M.A.M., Chen, L., Cheng, H., and Li, Y. (2020). An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17, 1139-1146.

Jinno, S., Ishizuka, S., and Kosaka, T. (2003). Ionic currents underlying rhythmic bursting of ventral mossy cells in the developing mouse dentate gyrus. Eur. J. Neurosci. 17, 1338-1354.

Jonas, P., and Lisman, J. (2014). Structure, function, and plasticity of hippocampal dentate gyrus microcircuits. Front. Neural Circuits 8, 107.

Jovanovic, T., and Ressler, K.J. (2010). How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am. J. Psychiatry 167, 648-662.

Jung, M.W., Wiener, S.I., and McNaughton, B.L. (1994). Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J. Neurosci. 14, 7347-7356.

Kheirbek, M.A., Drew, L.J., Burghardt, N.S., Costantini, D.O., Tannenholz, L., Ahmari, S.E., Zeng, H., Fenton, A.A., and Hen, R. (2013). Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus. Neuron 77, 955-968.

Kheirbek, M.A., and Hen, R. (2011). Dorsal vs ventral hippocampal neurogenesis: implications for cognition and mood. Neuropsychopharmacology 36, 373-374.

Khemka, S., Barnes, G., Dolan, R.J., and Bach, D.R. (2017). Dissecting the function of hippocampal oscillations in a human anxiety model. J. Neurosci. 37, 6869-6876.

Kim, S.Y., Adhikari, A., Lee, S.Y., Marshel, J.H., Kim, C.K., Mallory, C.S., Lo, M., Pak, S., Mattis, J., Lim, B.K., et al. (2013). Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219-223.

Kim, W.B., and Cho, J.H. (2017). Synaptic targeting of double-projecting ventral CA1 hippocampal neurons to the medial prefrontal cortex and basal amygdala. J. Neurosci. 37, 4868-4882.

Klüver, H., and Bucy, P.C. (1937). ‘‘Psychic blindness’’ and other symptoms following bilateral temporal lobectomy in Rhesus monkeys. Am. J. Physiol. 119, 352-353.

Knierim, J.J. (2015). The hippocampus. Curr. Biol. 25, R1116-1121.

Knowles, W.D., and Schwartzkroin, P.A. (1981). Axonal ramifications of hippocampal CA1 pyramidal cells. J. Neurosci. 1, 1236-1241.

Kondo, H., and Witter, M.P. (2014). Topographic organization of orbitofrontal projections to the parahippocampal region in rats. J. Comp. Neurol. 522, 772-793.

Kosel, K.C., Van Hoesen, G.W., and West, J.R. (1981). Olfactory bulb projections to the parahippocampal area of the rat. J. Comp. Neurol. 198, 467-482.

Kotti, T., Tapiola, T., Riekkinen, P.J. Sr, and Miettinen, R. (1996). The calretinin-containing mossy cells survive excitotoxic insult in the gerbil dentate gyrus. Comparison of excitotoxicity-induced neuropathological changes in the gerbil and rat. Eur. J. Neurosci. 8, 2371-2378.

Krashes, M.J., Koda, S., Ye, C., Rogan, S.C., Adams, A.C., Cusher, D.S., Maratos-Flier, E., Roth, B.L., and Lowell, B.B. (2011). Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest. 121, 1424-1428.

Lee, I., and Kesner, R.P. (2004). Encoding versus retrieval of spatial memory: double dissociation between the dentate gyrus and the perforant path inputs into CA3 in the dorsal hippocampus. Hippocampus 14, 66-76.

Lee, A.T., Cunniff, M.M., See, J.Z., Wilke, S.A., Luongo, F.J., Ellwood, I.T., Ponnavolu, S., and Sohal, V.S. (2019). VIP interneurons contribute to avoidance behavior by regulating information flow across hippocampal-prefrontal networks. Neuron 102, 1223-1234.

Lee, C.T., Kao, M.H., Hou, W.H., Wei, Y.T., Chen, C.L., and Lien, C.C. (2016). Causal evidence for the role of specific GABAergic interneuron types in entorhinal recruitment of dentate granule cells. Sci. Rep. 6, 36885.

Leutgeb, J.K., Leutgeb, S., Moser, M.B., Moser, E.I. (2007). Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315, 961-966.

Liu, Y.C., Cheng, J.K., and Lien, C.C. (2014a). Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J. Neurosci. 34, 1344-1357.

Liu, Y.T., Shao, Y.W., Yen, C.T., and Shaw, F.Z. (2014b). Acid-induced hyperalgesia and anxio-depressive comorbidity in rats. Physiol. Behav. 131, 105-110.

Lim, D.H., Ledue, J., Mohajerani, M.H., Vanni, M.P., and Murphy, T.H. (2013). Optogenetic approaches for functional mouse brain mapping. Front. Neurosci. 7, 54.

Lodge, M., and Bischofberger, J. (2019). Synaptic properties of newly generated granule cells support sparse coding in the adult hippocampus. Behav. Brain Res. 372, 112036.

Loughlin, S.E., Foote, S.L., and Bloom, F.E. (1986). Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience. 18, 291-306.

Lu, L., Leutgeb, J.K., Tsao, A., Henriksen, E.J., Leutgeb, S., Barnes, C.A., Witter, M.P., Moser, M.B., and Moser, E.I. (2013). Impaired hippocampal rate coding after lesions of the lateral entorhinal cortex. Nat. Neurosci. 16, 1085-1093.

Lübke, J., Deller, T., and Frotscher, M. (1997). Septal innervation of mossy cells in the hilus of the rat dentate gyrus: an anterograde tracing and intracellular labeling study. Exp. Brain Res. 114, 423-432.

Maglóczky, Z., Acsády, L., and Freund, T.F. (1994). Principal cells are the postsynaptic targets of supramammillary afferents in the hippocampus of the rat. Hippocampus 4, 322-334.

Marín-Burgin, A., Mongiat, L.A., Pardi, M.B., and Schinder, A.F. (2012). Unique processing during a period of high excitation/inhibition balance in adult-born neurons. Science 335, 1238-1242.

Mathiasen, M.L., Hansen, L., and Witter, M.P. (2015). Insular projections to the parahippocampal region in the rat. J. Comp. Neurol. 523, 1379-1398.

McHugh, T.J., Jones, M.W., Quinn, J.J., Balthasar, N., Coppari, R., Elmquist, J.K., Lowell, B.B., Fanselow, M.S., Wilson, M.A., and Tonegawa, S. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317, 94-99.

Moore, R.Y., and Halaris, A.E. (1975). Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J. Comp. Neurol. 164, 171-183.

Moretto, J.N., Duffy, Á.M., and Scharfman, H.E. (2017). Acute restraint stress decreases c-Fos immunoreactivity in hilar mossy cells of the adult dentate gyrus. Brain Struct. Funct. 222, 2405-2419.

Moser, M.B., Moser, E.I., Forrest, E., Andersen, P., and Morris, R.G. (1995). Spatial learning with a minislab in the dorsal hippocampus. Proc. Natl. Acad. Sci. U. S. A. 92, 9697-9701.

Mosko, S., Lynch, G., and Cotman, C.W. (1973). The distribution of septal projections to the hippocampus of the rat. J. Comp. Neurol. 152, 163-174.

Murakawa, R., and Kosaka, T. (2001). Structural features of mossy cells in the hamster dentate gyrus, with special reference to somatic thorny excrescences. J. Comp. Neurol. 429, 113-126.

Myers, C.E., and Scharfman, H.E. (2009). A role for hilar cells in pattern separation in the dentate gyrus: a computational approach. Hippocampus 19, 321-337.

Nakashiba, T., Cushman, J.D., Pelkey, K.A., Renaudineau, S., Buhl, D.L., McHugh, T.J., Rodriguez Barrera, V., Chittajallu, R., Iwamoto, K.S., McBain, C.J., Fanselow, M.S., and Tonegawa, S. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149, 188-201.

Nakazawa, K. (2017). Dentate mossy cell and pattern separation. Neuron 93, 465-467.

Nascimento Häckl, L.P., and Carobrez, A.P. (2007) Distinct ventral and dorsal hippocampus AP5 anxiolytic effects revealed in the elevated plus-maze task in rats. Neurobiol. Learn Mem. 88, 177-185.

Niewoehner, B., Single, F.N., Hvalby, Ø., Jensen, V., Meyer zum Alten Borgloh, S., Seeburg, P.H., Rawlins, J.N., Sprengel, R., and Bannerman, D.M. (2007). Impaired spatial working memory but spared spatial reference memory following functional loss of NMDA receptors in the dentate gyrus. Eur. J. Neurosci. 25, 837-846.

Njung'e, K., and Handley, S.L. (1991). Evaluation of marble-burying behavior as a model of anxiety. Pharmacol. Biochem. Behav. 38, 63-67.

Ogando, M.B., Pedroncini, O., Federman, N., Romano, S.A., Brum, L.A., Lanuza, G.M., Refojo, D., and Marin-Burgin, A. (2021). Cholinergic modulation of dentate gyrus processing through dynamic reconfiguration of inhibitory circuits. Cell Rep. 36, 109572.

Oh, S.J., Cheng, J., Jang, J.H., Arace, J., Jeong, M., Shin, C.H., Park, J., Jin, J., Greengard, P., and Oh, Y.S. (2020). Hippocampal mossy cell involvement in behavioral and neurogenic responses to chronic antidepressant treatment. Mol. Psychiatry 25, 1215-1228.

O'Keefe, J., and Burgess N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature 381, 425-428.

O'Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171-175.

Okuyama, T., Kitamura, T., Roy, D.S., Itohara, S., and Tonegawa, S. (2016). Ventral CA1 neurons store social memory. Science 353, 1536-1541.

Padilla-Coreano, N., Bolkan, S.S., Pierce, G.M., Blackman, D.R., Hardin, W.D., Garcia-Garcia, A.L., Spellman, T.J., and Gordon, J.A. (2016). Direct ventral hippocampal-prefrontal input is required for anxiety-related neural activity and behavior. Neuron 89, 857-866.

Padilla-Coreano, N., Canetta, S., Mikofsky, R.M., Always, E., Passecker, J., Myroshnychenko, M.V., Garcia-Garcia, A.L., Warren, R., Teboul, E., Blackman, D.R., Morton, M.P., Hupalo, S., Tye, K.M., Kellendonk, C., Kupferschmidt, D.A., and Gordon, J.A. (2019). Hippocampal-prefrontal theta transmission regulates avoidance behavior. Neuron 104, 601-610.e4.

Parfitt, G.M., Nguyen, R., Bang, J.Y., Aqrabawi, A.J., Tran, M.M., Seo, D.K., Richards, B.A., and Kim, J.C. (2017). Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology 42, 1715-1728.

Park, H.G., and Carmel, J.B. (2016). Selective manipulation of neural circuits. Neurotherapeutics 13, 311-324.

Patel, A., and Bulloch, K. (2003). Type II glucocorticoid receptor immunoreactivity in the mossy cells of the rat and the mouse hippocampus. Hippocampus 13, 59-66.

Patel, A.A., McAlinden, N., Mathieson, K., and Sakata, S. (2020). Simultaneous electrophysiology and fiber photometry in freely behaving mice. Front. Neurosci. 14, 148.

Pellow, S., Chopin, P., File, S.E., and Briley, M. (1985). Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149-167.

Penley, S.C., Hinman, J.R., Long, L.L., Markus, E.J., Escabí, M.A., and Chrobak, J.J. (2013). Novel space alters theta and gamma synchrony across the longitudinal axis of the hippocampus. Front. Syst. Neurosci. 7, 20.

Pinault, D. (1996). A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J. Neurosci. Methods 65, 113-136.

Pothuizen, H.H., Zhang, W.N., Jongen-Rêlo, A.L., Feldon, J., and Yee, B.K. (2004). Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: a within-subject, within-task comparison of reference and working spatial memory. Eur. J. Neurosci. 19, 705-712.

Ratzliff, Ad., Howard, A.L., Santhakumar, V., Osapay, I., and Soltesz, I. (2004). Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: implications for epileptogenesis. J. Neurosci. 24, 2259-2269.

Ratzliff, Ad., Santhakumar, V., Howard, A., and Soltesz, I. (2002). Mossy cells in epilepsy: rigor mortis or vigor mortis? Trends Neurosci. 25, 140-144.

Revest, J.M., Dupret, D., Koehl, M., Funk-Reiter, C., Grosjean, N., Piazza, P.V., and Abrous, D.N. (2009). Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol. Psychiatry 14, 959-967.

Scharfman, H.E., and Schwartzkroin, P.A. (1988). Electrophysiology of morphologically identified mossy cells of the dentate hilus recorded in guinea pig hippocampal slices. J. Neurosci. 8, 3812-3821.

Scharfman, H.E. (1991). Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J. Neurosci. 11, 1660-1673.

Scharfman, H.E. (1992). Blockade of excitation reveals inhibition of dentate spiny hilar neurons recorded in rat hippocampal slices. J. Neurophysiol. 68, 978-984.

Scharfman, H.E. (1995). Electrophysiological evidence that dentate hilar mossy cells are excitatory and innervate both granule cells and interneurons. Neurophysiol. 74, 179-194.

Scharfman, H.E., and Myers, C.E. (2013). Hilar mossy cells of the dentate gyrus: a historical perspective. Front. Neural Circuits 6, 106.

Scharfman, H.E. (2016). The enigmatic mossy cell of the dentate gyrus. Nat. Rev. Neurosci. 17, 562-575.

Schmidt-Wilcke, T., Leinisch, E., Gänssbauer, S., Draganski, B., Bogdahn, U., Altmeppen, J., and May, A. (2006). Affective components and intensity of pain correlate with structural differences in gray matter in chronic back pain patients. Pain 125, 89-97.

Schloesser, R.J., Manji, H.K., and Martinowich, K. (2009). Suppression of adult neurogenesis leads to an increased hypothalamo-pituitary-adrenal axis response. Neuroreport 20, 553-557.

Schneider, P., Ho, Y.J., Spanagel, R., and Pawlak, C.R. (2011). A novel elevated plus-maze procedure to avoid the one-trial tolerance problem. Front. Behav. Neurosci. 5, 43.

Schoenfeld, T.J., Rada, P., Pieruzzini, P.R., Hsueh, B., and Gould, E. (2013). Physical exercise prevents stress-induced activation of granule neurons and enhances local inhibitory mechanisms in the dentate gyrus. J. Neurosci. 33, 7770-7777.

Sengupta, A., Yau, J.O.Y., Jean-Richard-Dit-Bressel, P., Liu, Y., Millan, E.Z., Power, J.M., and McNally, G.P. (2018). Basolateral amygdala neurons maintain aversive emotional salience. J. Neurosci. 38, 3001-3012.

Scoville, W.B., and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20, 11-21.

Senzai, Y., and Buzsáki, G. (2017). Physiological properties and behavioral correlates of hippocampal granule cells and mossy cells. Neuron 93, 691-704.e5.

Seress, L., and Mrzljak, L. (1992). Postnatal development of mossy cells in the human dentate gyrus: a light microscopic Golgi study. Hippocampus 2, 127-141.

Seress, L., and Ribak, C.E. (1995). Postnatal development and synaptic connections of hilar mossy cells in the hippocampal dentate gyrus of rhesus monkeys. J. Comp. Neurol. 355, 93-110.

Sharma, N.K., Ryals, J.M., Liu, H., Liu, W., and Wright, D.E. (2009). Acidic saline-induced primary and secondary mechanical hyperalgesia in mice. J. Pain 10, 1231-1241.

Sloviter, R.S., and Lømo, T. (2012). Updating the lamellar hypothesis of hippocampal organization. Front. Neural Circuits 6, 102.

Sluka, K.A., Kalra, A., and Moore, S.A. (2001). Unilateral intramuscular injections of acidic saline produce a bilateral, long-lasting hyperalgesia. Muscle Nerve 24, 37-46.

Soltesz, I., Bourassa, J., and Deschênes, M. (1993). The behavior of mossy cells of the rat dentate gyrus during theta oscillations in vivo. Neuroscience 57, 555-564.

Soltesz, I., and Mody, I. (1994) Patch-clamp recordings reveal powerful GABAergic inhibition in dentate hilar neurons. J. Neurosci. 14, 2365-2376.

Soriano, E., and Frotscher, M. (1994). Mossy cells of the rat fascia dentata are glutamate-immunoreactive. Hippocampus 4, 65-69.

Squire, L.R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev. 99, 195-231.

Sternson, S.M., and Roth, B.L. (2014). Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci. 37, 387-407.

Steward, O. (1976). Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat. J. Comp. Neurol. 167, 285-314.

Steward, O., and Scoville, S.A. (1976). Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat. J. Comp. Neurol. 169, 347-370.

Strowbridge, B.W., Buckmaster, P.S., and Schwartzkroin, P.A. (1992). Potentiation of spontaneous synaptic activity in rat mossy cells. Neurosci. Lett. 142, 205-210.

Sun, Y., Grieco, S.F., Holmes, T.C., and Xu, X. (2017). Local and long-range circuit connections to hilar mossy cells in the dentate gyrus. eNeuro 4, ENEURO.0097-17.2017.

Swaminathan, A., Wichert, I., Schmitz, D., and Maier, N. (2018). Involvement of mossy cells in sharp wave-ripple activity in vitro. Cell Rep. 23, 2541-2549.

Szabo, G.G., Du, X., Oijala, M., Varga, C., Parent, J.M., and Soltesz, I. (2017). Extended interneuronal network of the dentate gyrus. Cell Rep. 20, 1262-1268.

Tamamaki, N., and Nojyo, Y. (1993). Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure-injection of neurobiotin. Hippocampus 3, 471-480.

Tanaka, K.F., Samuels, B.A., and Hen, R. (2012). Serotonin receptor expression along the dorsal-ventral axis of mouse hippocampus. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 2395-2401.

Tannenholz, L., Jimenez, J.C., and Kheirbek, M.A. (2014). Local and regional heterogeneity underlying hippocampal modulation of cognition and mood. Front. Behav. Neurosci. 8, 147.

Tao, S., Wang, Y., Peng, J., Zhao, Y., He, X., Yu, X., Liu, Q., Jin, S., and Xu, F. (2021). Whole-brain mapping the direct inputs of dorsal and ventral CA1 projection neurons. Front. Neural Circuits 15, 643230.

Thieme, K., Turk, D.C., and Flor, H. (2004). Comorbid depression and anxiety in fibromyalgia syndrome: relationship to somatic and psychosocial variables. Psychosom. Med. 66, 837-844.

Treves, A., and Rolls, E.T. (1994). Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374-391.

Tucker, L.B., and McCabe, J.T. (2017). Behavior of male and female C57BL/6J mice is more consistent with repeated trials in the elevated zero maze than in the elevated plus maze. Front. Behav. Neurosci. 11, 13.

van Groen, T., Miettinen, P., and Kadish, I. (2003). The entorhinal cortex of the mouse: organization of the projection to the hippocampal formation. Hippocampus 13, 133-149.

Wang, Y., DeMarco, E.M., Witzel, L.S., Keighron, J.D. (2021). A selected review of recent advances in the study of neuronal circuits using fiber photometry. Pharmacol. Biochem. Behav. 201, 173113.

Weeden, C.S., Roberts, J.M., Kamm, A.M., and Kesner, R.P. (2015). The role of the ventral dentate gyrus in anxiety-based behaviors. Neurobiol. Learn Mem. 118, 143-149.

Wei, Y.T., Wu, J.W., Yeh, C.W., Shen, H.C., Wu, K.P., Vida, I., and Lien, C.C. (2021). Morpho-physiological properties and connectivity of vasoactive intestinal polypeptide-expressing interneurons in the mouse hippocampal dentate gyrus. J. Comp. Neurol. 529, 2658-2675.

Williams, P.A., Larimer, P., Gao, Y., and Strowbridge, B.W. (2007). Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J. Neurosci. 27, 13756-13761.

Witter, M.P. (1993). Organization of the entorhinal-hippocampal system: a review of current anatomical data. Hippocampus 3, Spec No:33-44.

Witter, M.P., Doan, T.P., Jacobsen, B., Nilssen, E.S., and Ohara, S. (2017). Architecture of the entorhinal cortex a review of entorhinal anatomy in rodents with some comparative notes. Front. Syst. Neurosci. 11, 46.

Wright, B.J., and Jackson, M.B. (2014). Long-term potentiation in hilar circuitry modulates gating by the dentate gyrus. J. Neurosci. 34, 9743-9753.

Wyss, J.M., Swanson, L.W., and Cowan, W.M. (1979). Evidence for an input to the molecular layer and the stratum granulosum of the dentate gyrus from the supramammillary region of the hypothalamus. Anat. Embryol. (Berl). 156, 165-176.

Yuan, M., Meyer, T., Benkowitz, C., Savanthrapadian, S., Ansel-Bollepalli, L., Foggetti, A., Wulff, P., Alcami, P., Elgueta, C., and Bartos, M. (2017). Somatostatin-positive interneurons in the dentate gyrus of mice provide local- and long-range septal synaptic inhibition. eLife. 6, e21105.

Zhang, Y., Jiang, Y.Y., Shao, S., Zhang, C., Liu, F.Y., Wan, Y., and Yi, M. (2017). Inhibiting medial septal cholinergic neurons with DREADD alleviated anxiety-like behaviors in mice. Neurosci. Lett. 638, 139-144.

Zhuo, M. (2016). Neural mechanisms underlying anxiety-chronic pain interactions. Trends Neurosci. 39, 136-145.

Zou, D., Chen, L., Deng, D., Jiang, D., Dong, F., McSweeney, C., Zhou, Y., Liu, L., Chen, G., Wu, Y., et al. (2016). DREADD in parvalbumin interneurons of the dentate gyrus modulates anxiety, social interaction and memory extinction. Curr. Mol. Med. 16, 91-102.

Zucca, S., Griguoli, M., Malézieux, M., Grosjean, N., Carta, M., and Mulle, C. (2017). Control of spike transfer at hippocampal mossy fiber synapses in vivo by GABAA and GABAB receptor-mediated inhibition. J. Neurosci. 37, 587-598.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊