跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/24 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張舜泰
研究生(外文):Chong, Shin-Tai
論文名稱:擴散磁振造影於神經外科臨床應用
論文名稱(外文):The Application of diffusion MRI in neurosurgery
指導教授:林慶波林慶波引用關係
指導教授(外文):Lin, Ching-Po
口試委員:許秉權郭浩中張守進孫家偉唐高駿羅畯義高鴻文
口試委員(外文):Hsu, Sanford PCKuo, Hao-ChungChang, Shoou-JinnSun, Chia-WeiTang, Gau-JunLo, Chun-YiKao, Hung-Wen
口試日期:2022-04-14
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:神經科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:120
中文關鍵詞:腦瘤神經外科磁振造影擴散性磁振造影神經追蹤微結構
外文關鍵詞:Brain tumorNeurosurgeryMagnetic resonance imagingdiffusion MRIFiber tractographyMicrostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腦瘤是指局部腦組織細胞發生不正常的分裂增殖而生成瘤塊,佔據腦部有限密閉空間或侵害正常腦組織並造成腦部症狀。腦瘤主要可分為原發性和轉移性,原發性腦瘤依組織類型可分為神經元膠質細胞或非神經元膠質細胞,依病理形態又可分為良性與惡性腦瘤。轉移性腦瘤是指由其他部位癌症轉移而來,常見的為乳癌、肺癌、大腸癌等。惡性腦瘤的好發率雖然不高,但因為其生存率不高,手術預後差,常導致影響生活功能,且腦部為人體無可取代之重要器官,因此需給予重視。磁振造影以非侵入性方式為腦組織提供了高解析度及高對比影像,因而成為臨床中最常使用的腦瘤診斷工具。眾多磁振造影技術中,擴散性磁振造影是目前唯一可透過觀察大腦白質微結構組織水分子擴散狀態進而以三維呈現大腦白質神經束走向的工具。白質神經束追蹤技術雖然已發展超過20年,但由於受到機器硬體設備及數據處理複雜性的影響導致神經追蹤結果不準確性因而局限了其在臨床中的應用性。近年來大腦白質神經追蹤技術開始廣泛地應用於神經外科,透過解析大腦白質微結構以輔助腫瘤的判讀、手術的規劃、手術導航、甚至術後功能的評估。為了將大腦白質神經追蹤術能更有效地應用於神經外科,在此論文中我們首先針對臨床最常使用的白質神經追蹤術演算法進行優化及驗證,為神經外科醫師開發了一款全自動化的神經追蹤軟體DiffusionGo,以降低因繁瑣操作及人為因素導致神經追蹤結果之差異。其次,我們針對目前臨床常用的掃描參數進行優化,採用了更高階的擴散掃描參數及模型,以突顯腦瘤周邊水腫之神經束並加以驗證其準確性。在論文的最後部分,我們採用了高階擴散影像模型,對腦瘤種類及級別進行分類,且進一步探討了影像參數與腫瘤細胞之間的關係,提供術前虛擬生物切片,為手術規劃提供更多的訊息。總結而言,此論文透過優化擴散性磁振造影造影之掃描參數及分析流程,以協助神經外科於臨床之輔助診斷、手術規劃、手術導航及功能評估。
A brain tumor refers to an abnormal division and proliferation of brain tissue cells that form tumor masses, occupy a confined space in the brain, invading normal brain tissues, and producing neurological symptoms. More than 150 different brain tumors have been documented, but the two main groups of brain tumors can be categorized as primary and metastatic. Primary brain tumors include tumors that originate in the tissue of the brain or the immediate surroundings of the brain. Primary brain tumors can be classified according to tissue type into glial (composed of glial cells) or nonglial cells (developed on or in the structures of the brain, including nerves, bold vessels, and glands), and according to their pathological form into benign and malignant tumors. Metastatic brain tumors include tumors that arise elsewhere in the body (such as breast, lung, etc.) and migrate to the brain, usually through the bloodstream. Metastatic brain tumors are considered cancer and are malignant. Malignant brain tumors are well known to be rare, but their survival rates are low, the prognosis of surgery is poor, and they often affect the way we live, so it is an issue that must be taken seriously. Magnetic resonance imaging provides images of brain tissue in high-resolution and high-contrast noninvasively, and is therefore the most commonly used clinical diagnostic tool for brain tumors. Among all MR techniques, diffusion MRI is the only technique that can visualize the direction of white matter fiber bundles in three dimensions by probing the diffusion of water molecules in the white matter microstructure. Although the white matter fiber tractography technique has been developed for more than two decades, its clinical application is still limited due to the higher variability in the virtual fiber dissection caused by the influence of the hardware equipment and the complexity of the data processing. During the past few years, white matter fiber tractography has been widely used in neurosurgery, by probing the white matter microstructure to assist tumor diagnosis, surgical planning, surgical navigation, and postoperative functional evaluation. To apply diffusion MRI techniques in neurosurgery for precision surgery, we first optimized and verified the most commonly used fiber tractography algorithm in clinical practice. In order to reduce the variability of virtual fiber dissection due to the complexity of operation and human factors, we developed a fully automated fiber tractography software for neurosurgeons, DiffusionGo. In addition, we adapted advance diffusion protocols and models to highlight the edematous fiber tracts and verified its accuracy through five-year follow-up data. Finally, we use the advanced diffusion model to classify brain tumor types and grades, and we further explore the relationship between diffusion indices and tumor cellularity and develop a preoperative virtual biopsy to assist in surgical planning. In summary, this dissertation has optimized the diffusion MRI scanning protocol and analysis procedure to assist neurosurgeons in clinical diagnosis, surgical planning, surgical navigation, and postoperative functional evaluation.
TABLE OF CONTENTS
Chinses Abstract i
English Abstract ii
Table of Contents iv
List of Figures vi
List of Tables viii
CHAPTER 1 Introduction 1
1.1 Background 1
1.2 Motivations and purpose 10
CHAPTER 2 Multiple Assigned Criteria Fiber Tractography Algorithm: The Validation and Application 12
2.1 Introduction 12
2.2 Material and Method 14
2.2.1 Multiple assigned criteria fiber tractography 14
2.2.2 MAC algorithm in clinical application and validation 17
2.3 Results 21
2.3.1 Postmortem brain fiber dissection 21
2.3.2 Similarity comparison between postmortem brain and fiber tractography 23
2.3.3 MAC algorithm fiber tracking 24
2.3.4 DiffusionGo clinical application 24
2.4 Discussion 30
2.5 Conclusion 33
CHAPTER 3 Exploring Peritumoral Neural Tracts by using Neurite Orientation Dispersion and Density Imaging 34
3.1 Introduction 34
3.2 Material and Method 37
3.2.1 Participants 37
3.2.2 MRI Acquisition 37
3.2.3 Image Analysis 38
3.3 Results 45
3.3.1 ODI threshold calibration 45
3.3.2 Comparison between DTI and NODDI 47
3.3.3 ROC diagnostic performance analysis 49
3.3.4 NODDI fraction comparison 51
3.3.5 Tracts verifications after releasing the vasogenic edema 53
3.4 Discussion 54
3.5 Conclusion 58
CHAPTER 4 Assessing Microstructure Indices of Brain Tumor: A NODDI Study 59
4.1 Introduction 59
4.2 Material and Method 61
4.2.1 Participants 61
4.2.2 MRI acquisition 61
4.2.3 Imaging Analysis 62
4.3 Results 65
4.3.1 Group comparison of diffusion indices 65
4.3.2 Diagnostic performance between LGG and HGG 66
4.3.3 Histology validation 68
4.3.4 Clinical application 69
4.4 Discussion 71
4.5 Conclusion 74
CHAPTER 5 Conclusion, Limitations, and Future Extensions 75
5.1 Conclusion 75
5.2 Limitations 76
5.3 Future Extensions 77
References 78
Appendix 93
1. Adluru, G., Gur, Y., Anderson, J.S., Richards, L.G., Adluru, N., and Dibella, E.V.R. (2014). Assessment of white matter microstructure in stroke patients using NODDI. 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
2. Alexander, A.L., Hurley, S.A., Samsonov, A.A., Adluru, N., Hosseinbor, A.P., Mossahebi, P., Tromp, D.P., Zakszewski, E., and Field, A.S. (2011). Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain connectivity 1, 423-446.
3. Assaf, Y., and Pasternak, O. (2008). Diffusion Tensor Imaging (DTI)-based White Matter Mapping in Brain Research: A Review. Journal of Molecular Neuroscience 34, 51-61.
4. Auriat, A.M., Borich, M.R., Snow, N.J., Wadden, K.P., and Boyd, L.A. (2015). Comparing a diffusion tensor and non-tensor approach to white matter fiber tractography in chronic stroke. Neuroimage Clin 7, 771-781.
5. Basser, P.J. (1995). Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine 8, 333-344.
6. Basser, P.J., Mattiello, J., and Lebihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66, 259-267.
7. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J., and Aldroubi, A. (2000). In vivo fiber tractography using DT‐MRI data. Magnetic resonance in medicine 44, 625-632.
8. Bello, L., Gambini, A., Castellano, A., Carrabba, G., Acerbi, F., Fava, E., Giussani, C., Cadioli, M., Blasi, V., Casarotti, A., Papagno, C., Gupta, A.K., Gaini, S., Scotti, G., and Falini, A. (2008). Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. NeuroImage 39, 369-382.
9. Beppu, T., Inoue, T., Shibata, Y., Yamada, N., Kurose, A., Ogasawara, K., Ogawa, A., and Kabasawa, H. (2005). Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. Surgical neurology 63, 56-61.
10. Berman, J.I., Berger, M.S., Mukherjee, P., and Henry, R.G. (2004). Diffusion-tensor imaging—guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. Journal of Neurosurgery 101, 66-72.
11. Bu, L., Lu, J., Zhang, J., and Wu, J. (2021). Intraoperative Cognitive Mapping Tasks for Direct Electrical Stimulation in Clinical and Neuroscientific Contexts. Frontiers in Human Neuroscience 15, 61.
12. Callaghan, P.T., Coy, A., Macgowan, D., Packer, K.J., and Zelaya, F.O. (1991). Diffraction-like effects in NMR diffusion studies of fluids in porous solids. Nature 351, 467-469.
13. Cao, Y., Sundgren, P.C., Tsien, C.I., Chenevert, T.T., and Junck, L. (2006). Physiologic and metabolic magnetic resonance imaging in gliomas. Journal of Clinical Oncology 24, 1228-1235.
14. Caverzasi, E., Papinutto, N., Castellano, A., Zhu, A.H., Scifo, P., Riva, M., Bello, L., Falini, A., Bharatha, A., and Henry, R.G. (2016). Neurite Orientation Dispersion and Density Imaging Color Maps to Characterize Brain Diffusion in Neurologic Disorders. Journal of Neuroimaging 26, 494-498.
15. Chang, E.F., Raygor, K.P., and Berger, M.S. (2015). Contemporary model of language organization: an overview for neurosurgeons. Journal of neurosurgery 122, 250-261.
16. Chao, Y.-P., Chen, J.-H., Cho, K.-H., Yeh, C.-H., Chou, K.-H., and Lin, C.-P. (2008). A multiple streamline approach to high angular resolution diffusion tractography. Medical engineering & physics 30, 989-996.
17. Chen, Z., Tie, Y., Olubiyi, O., Rigolo, L., Mehrtash, A., Norton, I., Pasternak, O., Rathi, Y., Golby, A.J., and O'donnell, L.J. (2015). Reconstruction of the arcuate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented Kalman filter tractography. NeuroImage: Clinical 7, 815-822.
18. Chen, Z., Tie, Y., Olubiyi, O., Zhang, F., Mehrtash, A., Rigolo, L., Kahali, P., Norton, I., Pasternak, O., Rathi, Y., Golby, A.J., and O’donnell, L.J. (2016). Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography. International Journal of Computer Assisted Radiology and Surgery 11, 1475-1486.
19. Chong, S.T., Liu, X., Kao, H.-W., Lin, C.-Y.E., Hsu, C.-C.H., Kung, Y.-C., Kou, K.-T., Huang, C.-C., Lo, C.-Y.Z., and Lin, C.-P. (2021). Exploring Peritumoral Neural Tracts by Using Neurite Orientation Dispersion and Density Imaging. Frontiers in neuroscience, 1161.
20. Cooper, M., Thapar, A., and Jones, D.K. (2015). ADHD severity is associated with white matter microstructure in the subgenual cingulum. Neuroimage Clin 7, 653-660.
21. Cordero-Grande, L., Christiaens, D., Hutter, J., Price, A.N., and Hajnal, J.V. (2019). Complex diffusion-weighted image estimation via matrix recovery under general noise models. NeuroImage 200, 391-404.
22. Crombe, A., Planche, V., Raffard, G., Bourel, J., Dubourdieu, N., Panatier, A., Fukutomi, H., Dousset, V., Oliet, S., Hiba, B., and Tourdias, T. (2018). Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: Applications to experimental multiple sclerosis. NeuroImage 172, 357-368.
23. Curran Jr, W.J., Scott, C.B., Horton, J., Nelson, J.S., Weinstein, A.S., Fischbach, A.J., Chang, C.H., Rotman, M., Asbell, S.O., and Krisch, R.E. (1993). Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. JNCI: Journal of the National Cancer Institute 85, 704-710.
24. Daducci, A., Canales-Rodrı, E.J., Descoteaux, M., Garyfallidis, E., Gur, Y., Lin, Y.-C., Mani, M., Merlet, S., Paquette, M., and Ramirez-Manzanares, A. (2013). Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI. IEEE transactions on medical imaging 33, 384-399.
25. De Belder, F.E., Oot, A.R., Van Hecke, W., Venstermans, C., Menovsky, T., Van Marck, V., Van Goethem, J., Van Den Hauwe, L., Vandekerckhove, M., and Parizel, P.M. (2012). Diffusion tensor imaging provides an insight into the microstructure of meningiomas, high-grade gliomas, and peritumoral edema. Journal of computer assisted tomography 36, 577-582.
26. El-Serougy, L.G., Razek, A.a.K.A., Mousa, A.E., Eldawoody, H.a.F., and El-Morsy, A.E.-M.E. (2015). Differentiation between high-grade gliomas and metastatic brain tumors using Diffusion Tensor Imaging metrics. The Egyptian Journal of Radiology and Nuclear Medicine 46, 1099-1104.
27. Farquharson, S., Tournier, J.-D., Calamante, F., Fabinyi, G., Schneider-Kolsky, M., Jackson, G.D., and Connelly, A. (2013). White matter fiber tractography: why we need to move beyond DTI. Journal of Neurosurgery 118, 1367-1377.
28. Figini, M., Baselli, G., Riva, M., Bello, L., Zhang, H., and Bizzi, A. (2014). NODDI Performs Better Than DTI in Brain Tumors with Vasogenic Edema. Joint Annual Meeting ISMRM-ESMRMB.
29. Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774-781.
30. Fornito, A., Zalesky, A., and Breakspear, M. (2013). Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426-444.
31. Fu, X., Shrestha, S., Sun, M., Wu, Q., Luo, Y., Zhang, X., Yin, J., and Ni, H. (2020). Microstructural White Matter Alterations in Mild Cognitive Impairment and Alzheimer’s Disease. Clinical Neuroradiology 30, 569-579.
32. Gamble, A.J., Schaffer, S.G., Nardi, D.J., Chalif, D.J., Katz, J., and Dehdashti, A.R. (2015). Awake craniotomy in arteriovenous malformation surgery: the usefulness of cortical and subcortical mapping of language function in selected patients. World neurosurgery 84, 1394-1401.
33. Giese, A., and Westphal, M. (2001). Treatment of malignant glioma: a problem beyond the margins of resection. Journal of cancer research and clinical oncology 127, 217-225.
34. Goebell, E., Paustenbach, S., Vaeterlein, O., Ding, X.-Q., Heese, O., Fiehler, J., Kucinski, T., Hagel, C., Westphal, M., and Zeumer, H. (2006). Low-grade and anaplastic gliomas: differences in architecture evaluated with diffusion-tensor MR imaging. Radiology 239, 217-222.
35. Gong, S., Zhang, F., Norton, I., Essayed, W.I., Unadkat, P., Rigolo, L., Pasternak, O., Rathi, Y., Hou, L., Golby, A.J., and O’donnell, L.J. (2018). Free water modeling of peritumoral edema using multi-fiber tractography: Application to tracking the arcuate fasciculus for neurosurgical planning. PLOS ONE 13, e0197056.
36. Graham, M.S., Drobnjak, I., Jenkinson, M., and Zhang, H. (2017). Quantitative assessment of the susceptibility artefact and its interaction with motion in diffusion MRI. PLOS ONE 12, e0185647.
37. Gupta, A., Young, R., Karimi, S., Sood, S., Zhang, Z., Mo, Q., Gutin, P., Holodny, A., and Lassman, A. (2011). Isolated diffusion restriction precedes the development of enhancing tumor in a subset of patients with glioblastoma. American journal of neuroradiology 32, 1301-1306.
38. Hau, J., Sarubbo, S., Houde, J.C., Corsini, F., Girard, G., Deledalle, C., Crivello, F., Zago, L., Mellet, E., and Jobard, G. (2017). Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation. Brain Structure and Function 222, 1645-1662.
39. Higano, S., Yun, X., Kumabe, T., Watanabe, M., Mugikura, S., Umetsu, A., Sato, A., Yamada, T., and Takahashi, S. (2006). Malignant astrocytic tumors: clinical importance of apparent diffusion coefficient in prediction of grade and prognosis. Radiology 241, 839-846.
40. Holodny, A.I., Ollenschleger, M.D., Liu, W.-C., Schulder, M., and Kalnin, A.J. (2001). Identification of the corticospinal tracts achieved using blood-oxygen-level–dependent and diffusion functional MR imaging in patients with brain tumors. American journal of neuroradiology 22, 83-88.
41. Hu, L.S., Eschbacher, J., Dueck, A., Heiserman, J., Liu, S., Karis, J., Smith, K., Shapiro, W., Pinnaduwage, D., and Coons, S. (2012). Correlations between perfusion MR imaging cerebral blood volume, microvessel quantification, and clinical outcome using stereotactic analysis in recurrent high-grade glioma. American Journal of Neuroradiology 33, 69-76.
42. Inoue, T., Ogasawara, K., Beppu, T., Ogawa, A., and Kabasawa, H. (2005). Diffusion tensor imaging for preoperative evaluation of tumor grade in gliomas. Clinical neurology and neurosurgery 107, 174-180.
43. Jain, R.K., Di Tomaso, E., Duda, D.G., Loeffler, J.S., Sorensen, A.G., and Batchelor, T.T. (2007). Angiogenesis in brain tumours. Nature Reviews Neuroscience 8, 610-622.
44. Jellison, B.J., Field, A.S., Medow, J., Lazar, M., Salamat, M.S., and Alexander, A.L. (2004). Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. American Journal of Neuroradiology 25, 356-369.
45. Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., and Smith, S.M. (2012). FSL. NeuroImage 62, 782-790.
46. Jenkinson, M., Du Plessis, D., Walker, C., and Smith, T. (2007). Advanced MRI in the management of adult gliomas. British journal of neurosurgery 21, 550-561.
47. Jensen, J.H., Falangola, M.F., Hu, C., Tabesh, A., Rapalino, O., Lo, C., and Helpern, J.A. (2011). Preliminary observations of increased diffusional kurtosis in human brain following recent cerebral infarction. NMR in biomedicine 24, 452-457.
48. Jensen, J.H., and Helpern, J.A. (2010). MRI quantification of non‐Gaussian water diffusion by kurtosis analysis. NMR in Biomedicine 23, 698-710.
49. Jensen, J.H., Helpern, J.A., Ramani, A., Lu, H., and Kaczynski, K. (2005). Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine 53, 1432-1440.
50. Jeurissen, B., Leemans, A., Tournier, J.-D., Jones, D.K., and Sijbers, J. (2013). Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Human Brain Mapping 34, 2747-2766.
51. Kaal, E.C.A., and Vecht, C.J. (2004). The management of brain edema in brain tumors. Current Opinion in Oncology 16, 593-600.
52. Kadota, Y., Hirai, T., Azuma, M., Hattori, Y., Khant, Z.A., Hori, M., Saito, K., Yokogami, K., and Takeshima, H. (2020). Differentiation between glioblastoma and solitary brain metastasis using neurite orientation dispersion and density imaging. Journal of Neuroradiology 47, 197-202.
53. Kellner, E., Dhital, B., Kiselev, V.G., and Reisert, M. (2016). Gibbs-ringing artifact removal based on local subvoxel-shifts. Magnetic Resonance in Medicine 76, 1574-1581.
54. Kleihues, P., and Ohgaki, H. (1999). Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology 1, 44-51.
55. Klingler, J., and Gloor, P. (1960). The connections of the amygdala and of the anterior temporal cortex in the human brain. Journal of Comparative Neurology 115, 333-369.
56. Lecoeur, J., Caruyer, E., Elliott, M., Brem, S., Macyszyn, L., and Verma, R. (2014). Addressing the Challenge of Edema in Fiber Tracking. MICCAI 2014 DTI Tractography Challenge.
57. Lecoeur, J., Caruyer, E., Macyszyn, L., and Verma, R. (2013). Improving White Matter Tractography by Resolving the Challenges of Edema. MICCAI 2013 DTI Tractography Challenge.
58. Liao, R., Ning, L., Chen, Z., Rigolo, L., Gong, S., Pasternak, O., Golby, A.J., Rathi, Y., and O’donnell, L.J. (2017). Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model. NeuroImage: Clinical 15, 819-831.
59. Lin, C.-P., Chong, S.T., Lo, C.-Y., and Huang, C.-C. (2019). "Method and apparatus of fiber tracking, and non-transitory computer-readable medium thereof". Google Patents).
60. Lin, C.-P., Wedeen, V.J., Chen, J.-H., Yao, C., and Tseng, W.-Y.I. (2003). Validation of diffusion spectrum magnetic resonance imaging with manganese-enhanced rat optic tracts and ex vivo phantoms. Neuroimage 19, 482-495.
61. Liu, H., Fang, C., and Fan, Y. (2020). Mapping the inequalities of medical resource provision in China. Regional Studies, Regional Science 7, 568-570.
62. Louis, D.N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W.K., Ohgaki, H., Wiestler, O.D., Kleihues, P., and Ellison, D.W. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica 131, 803-820.
63. Lu, J., Zhao, Z., Zhang, J., Wu, B., Zhu, Y., Chang, E.F., Wu, J., Duffau, H., and Berger, M.S. (2021). Functional maps of direct electrical stimulation-induced speech arrest and anomia: a multicentre retrospective study. Brain 144, 2541-2553.
64. Lu, S., Ahn, D., Johnson, G., and Cha, S. (2003). Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 24, 937-941.
65. Lu, S., Ahn, D., Johnson, G., Law, M., Zagzag, D., and Grossman, R.I. (2004). Diffusion-Tensor MR Imaging of Intracranial Neoplasia and Associated Peritumoral Edema: Introduction of the Tumor Infiltration Index. Radiology 232, 221-228.
66. Maffei, C., Jovicich, J., De Benedictis, A., Corsini, F., Barbareschi, M., Chioffi, F., and Sarubbo, S. (2018). Topography of the human acoustic radiation as revealed by ex vivo fibers micro-dissection and in vivo diffusion-based tractography. Brain Structure and Function 223, 449-459.
67. Maier-Hein, K.H., Neher, P.F., Houde, J.-C., Côté, M.-A., Garyfallidis, E., Zhong, J., Chamberland, M., Yeh, F.-C., Lin, Y.-C., and Ji, Q. (2017). The challenge of mapping the human connectome based on diffusion tractography. Nature communications 8, 1-13.
68. Mascitelli, J.R., Yoon, S., Cole, T.S., Kim, H., and Lawton, M.T. (2018). Does eloquence subtype influence outcome following arteriovenous malformation surgery? Journal of neurosurgery 131, 876-883.
69. Masjoodi, S., Hashemi, H., Oghabian, M.A., and Sharifi, G. (2018). Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging. Journal of Biomedical Physics and Engineering.
70. Min, Z.-G., Niu, C., Rana, N., Ji, H.-M., and Zhang, M. (2013). Differentiation of pure vasogenic edema and tumor-infiltrated edema in patients with peritumoral edema by analyzing the relationship of axial and radial diffusivities on 3.0T MRI. Clinical Neurology and Neurosurgery 115, 1366-1370.
71. Mitchell, T., Archer, D.B., Chu, W.T., Coombes, S.A., Lai, S., Wilkes, B.J., Mcfarland, N.R., Okun, M.S., Black, M.L., Herschel, E., Simuni, T., Comella, C., Xie, T., Li, H., Parrish, T.B., Kurani, A.S., Corcos, D.M., and Vaillancourt, D.E. (2019). Neurite orientation dispersion and density imaging (NODDI) and free‐water imaging in Parkinsonism. Human Brain Mapping 40, 5094-5107.
72. Mohd Taib, N., Kamil, W., Shuaib, I.L., Magosso, E., and Mat Isa, S. (2017). Determination of Optimum Combination of Voxel Size and b-value for Brain Diffusion Tensor Imaging. Sains Malaysiana 46, 67-74.
73. Mori, S., Crain, B.J., Chacko, V.P., and Van Zijl, P.C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45, 265-269.
74. Mori, S., Frederiksen, K., Van Zijl, P.C., Stieltjes, B., Kraut, M.A., Solaiyappan, M., and Pomper, M.G. (2002). Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society 51, 377-380.
75. Mori, S., and Van Zijl, P.C.M. (2002). Fiber tracking: principles and strategies - a technical review. NMR in Biomedicine 15, 468-480.
76. Noguchi, K., Watanabe, N., Nagayoshi, T., Kanazawa, T., Toyoshima, S., Shimizu, M., and Seto, H. (1999). Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumour: a preliminary report. Neuroradiology 41, 171-174.
77. Panagiotaki, E., Walker-Samuel, S., Siow, B., Johnson, S.P., Rajkumar, V., Pedley, R.B., Lythgoe, M.F., and Alexander, D.C. (2014). Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer research 74, 1902-1912.
78. Parker, T.D., Slattery, C.F., Zhang, J., Nicholas, J.M., Paterson, R.W., Foulkes, A.J.M., Malone, I.B., Thomas, D.L., Modat, M., Cash, D.M., Crutch, S.J., Alexander, D.C., Ourselin, S., Fox, N.C., Zhang, H., and Schott, J.M. (2018). Cortical microstructure in young onset Alzheimer's disease using neurite orientation dispersion and density imaging. Human Brain Mapping 39, 3005-3017.
79. Patenaude, B., Smith, S.M., Kennedy, D.N., and Jenkinson, M. (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56, 907-922.
80. Platta, C.S., Khuntia, D., Mehta, M.P., and Suh, J.H. (2010). Current treatment strategies for brain metastasis and complications from therapeutic techniques: a review of current literature. American journal of clinical oncology 33, 398-407.
81. Prados, M.D., Seiferheld, W., Sandler, H.M., Buckner, J.C., Phillips, T., Schultz, C., Urtasun, R., Davis, R., Gutin, P., and Cascino, T.L. (2004). Phase III randomized study of radiotherapy plus procarbazine, lomustine, and vincristine with or without BUdR for treatment of anaplastic astrocytoma: final report of RTOG 9404. International Journal of Radiation Oncology* Biology* Physics 58, 1147-1152.
82. Price, S., Burnet, N., Donovan, T., Green, H., Pena, A., Antoun, N., Pickard, J.D., Carpenter, T.A., and Gillard, J. (2003). Diffusion tensor imaging of brain tumours at 3 T: a potential tool for assessing white matter tract invasion? Clinical radiology 58, 455-462.
83. Price, S.J. (2007). The role of advanced MR imaging in understanding brain tumour pathology. British journal of neurosurgery 21, 562-575.
84. Pujol, S., Wells, W., Pierpaoli, C., Brun, C., Gee, J., Cheng, G., Vemuri, B., Commowick, O., Prima, S., Stamm, A., Goubran, M., Khan, A., Peters, T., Neher, P., Maier-Hein, K.H., Shi, Y., Tristan-Vega, A., Veni, G., Whitaker, R., Styner, M., Westin, C.-F., Gouttard, S., Norton, I., Chauvin, L., Mamata, H., Gerig, G., Nabavi, A., Golby, A., and Kikinis, R. (2015). The DTI Challenge: Toward Standardized Evaluation of Diffusion Tensor Imaging Tractography for Neurosurgery. Journal of Neuroimaging 25, 875-882.
85. Qi, X.-X., Shi, D.-F., Ren, S.-X., Zhang, S.-Y., Li, L., Li, Q.-C., and Guan, L.-M. (2018). Histogram analysis of diffusion kurtosis imaging derived maps may distinguish between low and high grade gliomas before surgery. European radiology 28, 1748-1755.
86. Rathore, R.K., Gupta, R.K., Agarwal, S., Trivedi, R., Tripathi, R.P., and Awasthi, R. (2011). Principal eigenvector field segmentation for reproducible diffusion tensor tractography of white matter structures. Magnetic Resonance Imaging 29, 1088-1100.
87. Reveley, C., Seth, A.K., Pierpaoli, C., Silva, A.C., Yu, D., Saunders, R.C., Leopold, D.A., and Frank, Q.Y. (2015). Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proceedings of the National Academy of Sciences 112, E2820-E2828.
88. Sanai, N., Mirzadeh, Z., and Berger, M.S. (2008). Functional outcome after language mapping for glioma resection. New England Journal of Medicine 358, 18-27.
89. Schilling, K.G., Gao, Y., Stepniewska, I., Janve, V., Landman, B.A., and Anderson, A.W. (2019). Anatomical accuracy of standard-practice tractography algorithms in the motor system-A histological validation in the squirrel monkey brain. Magnetic resonance imaging 55, 7-25.
90. Schilling, K.G., Rheault, F., Petit, L., Hansen, C.B., Nath, V., Yeh, F.-C., Girard, G., Barakovic, M., Rafael-Patino, J., and Yu, T. (2021). Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? NeuroImage 243, 118502.
91. Server, A., Graff, B.A., Josefsen, R., Orheim, T.E., Schellhorn, T., Nordhøy, W., and Nakstad, P.H. (2014). Analysis of diffusion tensor imaging metrics for gliomas grading at 3 T. European journal of radiology 83, e156-e165.
92. Shirotani, T., Shima, K., and Chigasaki, H. (1994). "Resolution of Peritumoral Brain Edema Following Excision of Meningioma." Springer Vienna), 416-418.
93. Smith, S.M. (2002). Fast robust automated brain extraction. Human Brain Mapping 17, 143-155.
94. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., and Matthews, P.M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208-S219.
95. Sollmann, N., Fratini, A., Zhang, H., Zimmer, C., Meyer, B., and Krieg, S.M. 2019. Associations between clinical outcome and tractography based on navigated transcranial magnetic stimulation in patients with language-eloquent brain lesions. Journal of neurosurgery [Online], 132. Available: http://europepmc.org/abstract/MED/30875686
96. https://doi.org/10.3171/2018.12.JNS182988 [Accessed 2019/03//].
97. Stadlbauer, A., Ganslandt, O., Buslei, R., Hammen, T., Gruber, S., Moser, E., Buchfelder, M., Salomonowitz, E., and Nimsky, C. (2006). Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 240, 803-810.
98. Stadlbauer, A., Nimsky, C., Buslei, R., Salomonowitz, E., Hammen, T., Buchfelder, M., Moser, E., Ernst-Stecken, A., and Ganslandt, O. (2007). Diffusion tensor imaging and optimized fiber tracking in glioma patients: Histopathologic evaluation of tumor-invaded white matter structures. NeuroImage 34, 949-956.
99. Stadnik, T.W., Chaskis, C., Michotte, A., Shabana, W.M., Van Rompaey, K., Luypaert, R., Budinsky, L., Jellus, V., and Osteaux, M. (2001). Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. American journal of neuroradiology 22, 969-976.
100. Stevens, J.M., Ruiz, J.S., and Kendall, B.E. (1983). Observation on peritumoural oedema in meningioma. Part I: Distribution, spread and resolution of vasogenic oedema seen on computed tomography. Neuroradiology 25, 71-80.
101. Stupp, R., Mason, W.P., Van Den Bent, M.J., Weller, M., Fisher, B., Taphoorn, M.J., Belanger, K., Brandes, A.A., Marosi, C., and Bogdahn, U. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. New England journal of medicine 352, 987-996.
102. Sugahara, T., Korogi, Y., Kochi, M., Ikushima, I., Shigematu, Y., Hirai, T., Okuda, T., Liang, L., Ge, Y., and Komohara, Y. (1999). Usefulness of diffusion‐weighted MRI with echo‐planar technique in the evaluation of cellularity in gliomas. Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine 9, 53-60.
103. Suh, C., Kim, H., Jung, S., and Kim, S. (2018). Diffusion-weighted imaging and diffusion tensor imaging for differentiating high-grade glioma from solitary brain metastasis: a systematic review and meta-analysis. American Journal of Neuroradiology 39, 1208-1214.
104. Tang, L., and Zhou, X.J. (2019). Diffusion MRI of cancer: From low to high b‐values. Journal of Magnetic Resonance Imaging 49, 23-40.
105. Tate, M.C., Herbet, G., Moritz-Gasser, S., Tate, J.E., and Duffau, H. (2014). Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain 137, 2773-2782.
106. Tournier, J.-D., Smith, R., Raffelt, D., Tabbara, R., Dhollander, T., Pietsch, M., Christiaens, D., Jeurissen, B., Yeh, C.-H., and Connelly, A. (2019). MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage 202, 116137.
107. Tournier, J.-D., Yeh, C.-H., Calamante, F., Cho, K.-H., Connelly, A., and Lin, C.-P. (2008a). Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data. Neuroimage 42, 617-625.
108. Tournier, J.D., Yeh, C.-H., Calamante, F., Cho, K.-H., Connelly, A., and Lin, C.-P. (2008b). Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data. NeuroImage 42, 617-625.
109. Tustison, N.J., Avants, B.B., Cook, P.A., Yuanjie, Z., Egan, A., Yushkevich, P.A., and Gee, J.C. (2010). N4ITK: Improved N3 Bias Correction. IEEE Transactions on Medical Imaging 29, 1310-1320.
110. Veraart, J., Fieremans, E., and Novikov, D.S. (2016a). Diffusion MRI noise mapping using random matrix theory. Magnetic Resonance in Medicine 76, 1582-1593.
111. Veraart, J., Novikov, D.S., Christiaens, D., Ades-Aron, B., Sijbers, J., and Fieremans, E. (2016b). Denoising of diffusion MRI using random matrix theory. NeuroImage 142, 394-406.
112. Walker, C., Baborie, A., Crooks, D., Wilkins, S., and Jenkinson, M. (2011). Biology, genetics and imaging of glial cell tumours. The British journal of radiology 84, S90-S106.
113. Wang, S., Poptani, H., Bilello, M., Wu, X., Woo, J.H., Elman, L.B., Mccluskey, L.F., Krejza, J., and Melhem, E.R. (2006). Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Volumetric Analysis of the Corticospinal Tract. American Journal of Neuroradiology 27, 1234-1238.
114. Wang, X., Cusick, M.F., Wang, Y., Sun, P., Libbey, J.E., Trinkaus, K., Fujinami, R.S., and Song, S.K. (2014). Diffusion basis spectrum imaging detects and distinguishes coexisting subclinical inflammation, demyelination and axonal injury in experimental autoimmune encephalomyelitis mice. NMR in Biomedicine 27, 843-852.
115. Wang, Y., Wang, Q., Haldar, J.P., Yeh, F.-C., Xie, M., Sun, P., Tu, T.-W., Trinkaus, K., Klein, R.S., and Cross, A.H. (2011). Quantification of increased cellularity during inflammatory demyelination. Brain 134, 3590-3601.
116. Wang, Z., Zhang, S., Liu, C., Yao, Y., Shi, J., Zhang, J., Qin, Y., and Zhu, W. (2019). A study of neurite orientation dispersion and density imaging in ischemic stroke. Magnetic Resonance Imaging 57, 28-33.
117. Wen, P.Y., and Kesari, S. (2008). Malignant gliomas in adults. New England Journal of Medicine 359, 492-507.
118. Wen, Q., Kelley, D.a.C., Banerjee, S., Lupo, J.M., Chang, S.M., Xu, D., Hess, C.P., and Nelson, S.J. (2015). Clinically feasible NODDI characterization of glioma using multiband EPI at 7 T. NeuroImage: Clinical 9, 291-299.
119. Wu, J., Lu, J., Zhang, H., Zhang, J., Yao, C., Zhuang, D., Qiu, T., Guo, Q., Hu, X., and Mao, Y. (2015). Direct evidence from intraoperative electrocortical stimulation indicates shared and distinct speech production center between Chinese and English languages. Human brain mapping 36, 4972-4985.
120. Wu, J.-S., Zhang, J., Zhuang, D.-X., Yao, C.-J., Qiu, T.-M., Lu, J.-F., Zhu, F.-P., Ying, M., and Zhou, L.-F. (2011). Current status of cerebral glioma surgery in China. Chinese medical journal 124, 2567-2577.
121. Yablonskiy, D.A., and Sukstanskii, A.L. (2010). Theoretical models of the diffusion weighted MR signal. NMR in Biomedicine 23, 661-681.
122. Ye, Z., Gary, S.E., Sun, P., Mustafi, S.M., Glenn, G.R., Yeh, F.C., Merisaari, H., Song, C., Yang, R., Huang, G.S., Kao, H.W., Lin, C.Y., Wu, Y.C., Jensen, J.H., and Song, S.K. (2020a). The impact of edema and fiber crossing on diffusion MRI metrics assessed in an ex vivo nerve phantom: Multi‐tensor model vs. diffusion orientation distribution function. NMR in Biomedicine.
123. Ye, Z., Price, R.L., Liu, X., Lin, J., Yang, Q., Sun, P., Wu, A.T., Wang, L., Han, R.H., and Song, C. (2020b). Diffusion histology imaging combining diffusion basis spectrum imaging (DBSI) and machine learning improves detection and classification of glioblastoma pathology. Clinical Cancer Research 26, 5388-5399.
124. Yeh, C.-H., Schmitt, B., Le Bihan, D., Li-Schlittgen, J.-R., Lin, C.-P., and Poupon, C. (2013a). Diffusion microscopist simulator: a general Monte Carlo simulation system for diffusion magnetic resonance imaging. PloS one 8, e76626.
125. Yeh, F.-C., Verstynen, T.D., Wang, Y., Fernández-Miranda, J.C., and Tseng, W.-Y.I. (2013b). Deterministic Diffusion Fiber Tracking Improved by Quantitative Anisotropy. PLoS ONE 8, e80713.
126. Yu, Q., Lin, K., Liu, Y., and Li, X. (2020). Clinical Uses of Diffusion Tensor Imaging Fiber Tracking Merged Neuronavigation with Lesions Adjacent to Corticospinal Tract : A Retrospective Cohort Study. Journal of Korean Neurosurgical Society 63, 248-260.
127. Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., and Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage 31, 1116-1128.
128. Zhang, H., Schneider, T., Wheeler-Kingshott, C.A., and Alexander, D.C. (2012). NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61, 1000-1016.
129. Zhang, H., Wang, Y., Lu, T., Qiu, B., Tang, Y., Ou, S., Tie, X., Sun, C., Xu, K., and Wang, Y. (2013). Differences Between Generalized Q-Sampling Imaging and Diffusion Tensor Imaging in the Preoperative Visualization of the Nerve Fiber Tracts Within Peritumoral Edema in Brain. Neurosurgery 73, 1044-1053.
130. Zhang, Y., Brady, M., and Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20, 45-57.
電子全文 電子全文(網際網路公開日期:20240419)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top