跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃寶庭
研究生(外文):Huang, Bao-Ting
論文名稱:應用二氧化鈦奈米材料於光交聯大豆蛋白水凝膠之合成
論文名稱(外文):Titanium dioxide nanomaterial-mediated photo-crosslinking soy protein hydrogel synthesis
指導教授:許馨云許馨云引用關係
指導教授(外文):Hsu, Hsin-Yun
口試委員:廖奕翰洪崧富胡晉嘉
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用化學系分子科學碩博士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:49
中文關鍵詞:大豆分離蛋白二氧化鈦蛋白質水凝膠光交聯反應抗菌作用
外文關鍵詞:soy protein isolatetitanium dioxideprotein hydrogelphotocrosslinking reactionantimicrobial effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 i
Abstract ii
Table of Contents iii
List of Figures iv
List of Supplementary Figures vii
Chapter 1 - Introduction 1
1.1 Hydrogels fabrication by synthetic and natural polymers 1
1.2 Crosslinking strategies for soy protein hydrogel 2
1.3 Photo-induced crosslinking agents 3
Chapter 2 - Motivation 10
Chapter 3 - Materials and Methods 11
3.1 Materials 11
3.2 Synthesis of TiO2 nanorods 11
3.3 Characterization of TiO2 nanorods 11
3.5 Preparation of TiO2-doped soy protein gel 13
3.6 Characterization of TiO2-doped soy protein gel 13
3.7 Cell viability and cell adhesion assay 14
3.8 Anti-bacterial test 14
Chapter 4 - Results and Discussions 16
4.1 Synthesis and characterization of titanium oxide (TiO2) nanomaterials for photocrosslinking reaction 16
4.2 Preparation and characterization of TiO2-doped soy protein gel 22
4.2.1 Di-tyrosine fluorescence analysis 23
4.2.2 Morphology of TiO2-doped soy protein gel 25
4.2.3 Mechanical properties of TiO2-doped soy protein gel 26
4.2.4 Swelling capacity of TiO2-doped soy protein gel 28
4.3 Cell-hydrogel interactions 30
4.3.1 Cytotoxicity and cell adhesion 30
4.3.2 Anti-bacterial effect 34
Chapter 5 - Conclusions 36
Supplementary information 37
Reference 40
1. Guo, Y.; Bae, J.; Fang, Z.; Li, P.; Zhao, F.; Yu, G., Hydrogels and hydrogel-derived materials for energy and water sustainability. Chemical Reviews 2020, 120 (15), 7642-7707.
2. Mishra, S.; Rani, P.; Sen, G.; Dey, K. P., Preparation, properties and application of hydrogels: a review. Hydrogels 2018, 145-173.
3. Varaprasad, K.; Raghavendra, G. M.; Jayaramudu, T.; Yallapu, M. M.; Sadiku, R., A mini review on hydrogels classification and recent developments in miscellaneous applications. Materials Science and Engineering: C 2017, 79, 958-971.
4. Zhao, X., Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. Soft Matter 2014, 10 (5), 672-687.
5. Scalet, J. M.; Suekama, T. C.; Jeong, J.; Gehrke, S. H., Enhanced Mechanical Properties by Ionomeric Complexation in Interpenetrating Network Hydrogels of Hydrolyzed Poly (N-vinyl Formamide) and Polyacrylamide. Gels 2021, 7 (3), 80-94.
6. Alimba, C. G.; Faggio, C., Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology 2019, 68, 61-74.
7. De Tender, C.; Devriese, L. I.; Haegeman, A.; Maes, S.; Vangeyte, J. r.; Cattrijsse, A.; Dawyndt, P.; Ruttink, T., Temporal dynamics of bacterial and fungal colonization on plastic debris in the North Sea. Environmental Science & Technology 2017, 51 (13), 7350-7360.
8. Li, L.; Yu, F.; Zheng, L.; Wang, R.; Yan, W.; Wang, Z.; Xu, J.; Wu, J.; Shi, D.; Zhu, L., Natural hydrogels for cartilage regeneration: Modification, preparation and application. Journal of Orthopaedic Translation 2019, 17, 26-41.
9. Ghorbani, M.; Ai, J.; Nourani, M. R.; Azami, M.; Beni, B. H.; Asadpour, S.; Bordbar, S., Injectable natural polymer compound for tissue engineering of intervertebral disc: In vitro study. Materials Science and Engineering: C 2017, 80, 502-508.
10. Zhu, D.; Wang, H.; Trinh, P.; Heilshorn, S. C.; Yang, F., Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Biomaterials 2017, 127, 132-140.
11. Xu, K.; Lee, F.; Gao, S. J.; Chung, J. E.; Yano, H.; Kurisawa, M., Injectable hyaluronic acid-tyramine hydrogels incorporating interferon-α2a for liver cancer therapy. Journal of Controlled Release 2013, 166 (3), 203-210.
12. Demirtaş, T. T.; Irmak, G.; Gümüşderelioğlu, M., A bioprintable form of chitosan hydrogel for bone tissue engineering. Biofabrication 2017, 9 (3), 035003.
13. Zheng, L.; Liu, S.; Cheng, X.; Qin, Z.; Lu, Z.; Zhang, K.; Zhao, J., Intensified Stiffness and Photodynamic Provocation in a Collagen‐Based Composite Hydrogel Drive Chondrogenesis. Advanced Science 2019, 6 (16), 1900099.
14. Chen, J.; Mu, T.; Goffin, D.; Blecker, C.; Richard, G.; Richel, A.; Haubruge, E., Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing. Journal of food engineering 2019, 261, 76-86.
15. Akay, S.; Heils, R.; Trieu, H. K.; Smirnova, I.; Yesil-Celiktas, O., An injectable alginate-based hydrogel for microfluidic applications. Carbohydrate polymers 2017, 161, 228-234.
16. Cui, H.; Pan, N.; Fan, W.; Liu, C.; Li, Y.; Xia, Y.; Sui, K., Ultrafast Fabrication of Gradient Nanoporous All‐Polysaccharide Films as Strong, Superfast, and Multiresponsive Actuators. Advanced Functional Materials 2019, 29 (20), 1807692.
17. Deng, H.; Sun, J.; Yu, Z.; Guo, Z.; Xu, C., Low-intensity near-infrared light-triggered spatiotemporal antibiotics release and hyperthermia by natural polysaccharide-based hybrid hydrogel for synergistic wound disinfection. Materials Science and Engineering: C 2021, 118, 111530.
18. Qian, C.; Zhang, T.; Gravesande, J.; Baysah, C.; Song, X.; Xing, J., Injectable and self-healing polysaccharide-based hydrogel for pH-responsive drug release. International journal of biological macromolecules 2019, 123, 140-148.
19. Liu, S.; Kang, M.; Li, K.; Yao, F.; Oderinde, O.; Fu, G.; Xu, L., Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels. Chemical Engineering Journal 2018, 334, 2222-2230.
20. Ma, X.; Liu, S.; Tang, H.; Yang, R.; Chi, B.; Ye, Z., In situ photocrosslinked hyaluronic acid and poly (γ-glutamic acid) hydrogels as injectable drug carriers for load-bearing tissue application. Journal of Biomaterials Science, Polymer Edition 2018, 29 (18), 2252-2266.
21. Kuhn, K. R.; Cavallieri, Â. L. F.; Da Cunha, R. L., Cold‐set whey protein gels induced by calcium or sodium salt addition. International journal of food science & technology 2010, 45 (2), 348-357.
22. Yang, C.; Wang, Y.; Chen, L., Fabrication, characterization and controlled release properties of oat protein gels with percolating structure induced by cold gelation. Food Hydrocolloids 2017, 62, 21-34.
23. Cui, X.; Soliman, B. G.; Alcala‐Orozco, C. R.; Li, J.; Vis, M. A.; Santos, M.; Wise, S. G.; Levato, R.; Malda, J.; Woodfield, T. B., Rapid photocrosslinking of silk hydrogels with high cell density and enhanced shape fidelity. Advanced healthcare materials 2020, 9 (4), 1901667.
24. Kim, M. H.; Park, W. H., Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility. International journal of nanomedicine 2016, 11, 2967-2978.
25. Qin, X.-S.; Luo, S.-Z.; Cai, J.; Zhong, X.-Y.; Jiang, S.-T.; Zhao, Y.-Y.; Zheng, Z., Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment. Ultrasonics sonochemistry 2016, 31, 590-597.
26. Sarrigiannidis, S. O.; Rey, J. M.; Dobre, O.; González-García, C.; Dalby, M. J.; Salmeron-Sanchez, M., A tough act to follow: Collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Materials Today Bio 2021, 100098.
27. Zhao, Y.; Zhu, Z. S.; Guan, J.; Wu, S. J., Processing, mechanical properties and bio-applications of silk fibroin-based high-strength hydrogels. Acta Biomaterialia 2021, 125, 57-71.
28. Peng, Y. Y.; Glattauer, V.; Ramshaw, J. A.; Werkmeister, J. A., Evaluation of the immunogenicity and cell compatibility of avian collagen for biomedical applications. Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2010, 93 (4), 1235-1244.
29. Reddy, N.; Yang, Y., Potential of plant proteins for medical applications. Trends in biotechnology 2011, 29 (10), 490-498.
30. Jahangirian, H.; Azizi, S.; Rafiee-Moghaddam, R.; Baratvand, B.; Webster, T. J., Status of plant protein-based green scaffolds for regenerative medicine applications. Biomolecules 2019, 9 (10), 619-658.
31. Khabbaz, B.; Solouk, A.; Mirzadeh, H., Polyvinyl alcohol/soy protein isolate nanofibrous patch for wound-healing applications. Progress in biomaterials 2019, 8 (3), 185-196.
32. Las Heras, K.; Santos-Vizcaino, E.; Garrido, T.; Gutierrez, F. B.; Aguirre, J. J.; de la Caba, K.; Guerrero, P.; Igartua, M.; Hernandez, R. M., Soy protein and chitin sponge-like scaffolds: From natural by-products to cell delivery systems for biomedical applications. Green Chemistry 2020, 22 (11), 3445-3460.
33. Wongkanya, R.; Chuysinuan, P.; Pengsuk, C.; Techasakul, S.; Lirdprapamongkol, K.; Svasti, J.; Nooeaid, P., Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications. Journal of Science: Advanced Materials and Devices 2017, 2 (3), 309-316.
34. Rani, S.; Kumar, R., A review on material and antimicrobial properties of soy protein isolate film. Journal of Polymers and the Environment 2019, 27 (8), 1613-1628.
35. Kutzli, I.; Gibis, M.; Baier, S. K.; Weiss, J., Electrospinning of whey and soy protein mixed with maltodextrin–Influence of protein type and ratio on the production and morphology of fibers. Food hydrocolloids 2019, 93, 206-214.
36. Fang, H.; Li, J.; Huo, T.; Niu, Y.; Yu, L., Novel double cross-linked gels of soybean protein isolates and soluble dietary fiber from soybean coats with their functionalities. Food Hydrocolloids 2021, 113, 106474.
37. Curt, S.; Subirade, M.; Rouabhia, M., Production and in vitro evaluation of soy protein–based biofilms as a support for human keratinocyte and fibroblast culture. Tissue Engineering Part A 2009, 15 (6), 1223-1232.
38. Liu, Y.; Cui, Y., Preparation and properties of temperature‐sensitive soy protein/poly (N‐isopropylacrylamide) interpenetrating polymer network hydrogels. Polymer international 2011, 60 (7), 1117-1122.
39. Vilela, J. A. P.; Cavallieri, Â. L. F.; Da Cunha, R. L., The influence of gelation rate on the physical properties/structure of salt-induced gels of soy protein isolate–gellan gum. Food Hydrocolloids 2011, 25 (7), 1710-1718.
40. Guo, Y.; Bao, Y.-h.; Sun, K.-f.; Chang, C.; Liu, W.-f., Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions. Food Hydrocolloids 2021, 112, 106293.
41. Chen, N.; Chassenieux, C.; Nicolai, T., Kinetics of NaCl induced gelation of soy protein aggregates: Effects of temperature, aggregate size, and protein concentration. Food Hydrocolloids 2018, 77, 66-74.
42. Brito-Oliveira, T. C.; Bispo, M.; Moraes, I. C.; Campanella, O. H.; Pinho, S. C., Cold-set gelation of commercial soy protein isolate: Effects of the incorporation of locust bean gum and solid lipid microparticles on the properties of gels. Food Biophysics 2018, 13 (3), 226-239.
43. Wang, Z.; Liang, J.; Jiang, L.; Li, Y.; Wang, J.; Zhang, H.; Li, D.; Han, F.; Li, Q.; Wang, R., Effect of the interaction between myofibrillar protein and heat-induced soy protein isolates on gel properties. CyTA-Journal of Food 2015, 13 (4), 527-534.
44. Li, X.; Mao, L.; He, X.; Ma, P.; Gao, Y.; Yuan, F., Characterization of β-lactoglobulin gels induced by high pressure processing. Innovative Food Science & Emerging Technologies 2018, 47, 335-345.
45. Li, H.; Zhu, K.; Zhou, H.; Peng, W., Effects of high hydrostatic pressure on some functional and nutritional properties of soy protein isolate for infant formula. Journal of agricultural and food chemistry 2011, 59 (22), 12028-12036.
46. Ren, C.; Tang, L.; Zhang, M.; Guo, S., Structural characterization of heat-induced protein particles in soy milk. Journal of agricultural and food chemistry 2009, 57 (5), 1921-1926.
47. Prusty, K.; Biswal, A.; Biswal, S. B.; Swain, S. K., Synthesis of soy protein/polyacrylamide nanocomposite hydrogels for delivery of ciprofloxacin drug. Materials Chemistry and Physics 2019, 234, 378-389.
48. Liu, J.; Su, D.; Yao, J.; Huang, Y.; Shao, Z.; Chen, X., Soy protein-based polyethylenimine hydrogel and its high selectivity for copper ion removal in wastewater treatment. Journal of Materials Chemistry A 2017, 5 (8), 4163-4171.
49. Wang, W.; Shen, M.; Jiang, L.; Song, Q.; Liu, S.; Xie, J., Influence of Mesona blumes polysaccharide on the gel properties and microstructure of acid-induced soy protein isolate gels. Food chemistry 2020, 313, 126125.
50. Caillard, R.; Mateescu, M.; Subirade, M., Maillard-type cross-linked soy protein hydrogels as devices for the release of ionic compounds: an in vitro study. Food research international 2010, 43 (10), 2349-2355.
51. Chien, K. B.; Shah, R. N., Novel soy protein scaffolds for tissue regeneration: Material characterization and interaction with human mesenchymal stem cells. Acta biomaterialia 2012, 8 (2), 694-703.
52. Dorishetty, P.; Balu, R.; Sreekumar, A.; de Campo, L.; Mata, J. P.; Choudhury, N. R.; Dutta, N. K., Robust and tunable hybrid hydrogels from photo-cross-linked soy protein isolate and regenerated silk fibroin. ACS Sustainable Chemistry & Engineering 2019, 7 (10), 9257-9271.
53. Gulati, N.; Nagaich, U.; Sharma, V.; Khosa, R., Effect of polymer and cross linking agent on in vitro release of quercetin from microbeads. Asian Journal of Pharmacy and Life Science ISSN 2011, 1 (4), 401-405.
54. Denizli, B. K.; Can, H. K.; Rzaev, Z. M.; Guner, A., Preparation conditions and swelling equilibria of dextran hydrogels prepared by some crosslinking agents. Polymer 2004, 45 (19), 6431-6435.
55. Wang, H.; Wang, Y.; Zheng, P.; Yang, Y.; Chen, Y.; Cao, Y.; Deng, Y.; Wang, C., Self-Healing Double-Cross-Linked Supramolecular Binders of a Polyacrylamide-Grafted Soy Protein Isolate for Li–S Batteries. ACS Sustainable Chemistry & Engineering 2020, 8 (34), 12799-12808.
56. Zhang, P.; Hu, T.; Feng, S.; Xu, Q.; Zheng, T.; Zhou, M.; Chu, X.; Huang, X.; Lu, X.; Pan, S., Effect of high intensity ultrasound on transglutaminase-catalyzed soy protein isolate cold set gel. Ultrasonics Sonochemistry 2016, 29, 380-387.
57. Cao, C.; Feng, Y.; Kong, B.; Sun, F.; Yang, L.; Liu, Q., Transglutaminase crosslinking promotes physical and oxidative stability of filled hydrogel particles based on biopolymer phase separation. International Journal of Biological Macromolecules 2021, 172, 429-438.
58. Partlow, B. P.; Applegate, M. B.; Omenetto, F. G.; Kaplan, D. L., Dityrosine cross-linking in designing biomaterials. ACS Biomaterials Science & Engineering 2016, 2 (12), 2108-2121.
59. Liu, M.; Zhang, Z.; Cheetham, J.; Ren, D.; Zhou, Z. S., Discovery and characterization of a photo-oxidative histidine-histidine cross-link in IgG1 antibody utilizing 18O-labeling and mass spectrometry. Analytical chemistry 2014, 86 (10), 4940-4948.
60. Wu, S.-W.; Liu, X.; Miller II, A. L.; Cheng, Y.-S.; Yeh, M.-L.; Lu, L., Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydrate polymers 2018, 192, 308-316.
61. Ji, F.; Li, S.; Yang, H.; Wang, Z.; Li, A., Versatile Photocrosslinked Protein Hydrogel Matrix for Magnetic-Nanoparticle-Doping and Biomineralization. Journal of nanoscience and nanotechnology 2016, 16 (2), 1471-1476.
62. Whittaker, J. L.; Choudhury, N. R.; Dutta, N. K.; Zannettino, A., Facile and rapid ruthenium mediated photo-crosslinking of Bombyx mori silk fibroin. Journal of materials chemistry B 2014, 2 (37), 6259-6270.
63. Liu, C.; Hua, J.; Ng, P. F.; Fei, B., Photochemistry of bioinspired dityrosine crosslinking. Journal of Materials Science & Technology 2021, 63, 182-191.
64. Spasiano, D.; Marotta, R.; Malato, S.; Fernandez-Ibanez, P.; Di Somma, I., Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. Applied Catalysis B: Environmental 2015, 170, 90-123.
65. Hu, F.; Xu, S.; Liu, B., Photosensitizers with aggregation‐induced emission: materials and biomedical applications. Advanced materials 2018, 30 (45), 1801350.
66. Klán, P.; Wirz, J., Photochemistry of organic compounds: from concepts to practice. John Wiley & Sons: 2009.
67. Lutkus, L. V.; Rickenbach, S. S.; McCormick, T. M., Singlet oxygen quantum yields determined by oxygen consumption. Journal of Photochemistry and Photobiology A: Chemistry 2019, 378, 131-135.
68. Liu, S.; Brunel, D.; Sun, K.; Xu, Y.; Morlet-Savary, F.; Graff, B.; Xiao, P.; Dumur, F.; Lalevee, J., A monocomponent bifunctional benzophenone–carbazole type II photoinitiator for LED photoinitiating systems. Polymer Chemistry 2020, 11 (21), 3551-3556.
69. Parussulo, A. L.; Iglesias, B. A.; Toma, H. E.; Araki, K., Sevenfold enhancement on porphyrin dye efficiency by coordination of ruthenium polypyridine complexes. Chemical Communications 2012, 48 (55), 6939-6941.
70. Yuan, Y. J.; Yu, Z. T.; Gao, H. L.; Zou, Z. G.; Zheng, C.; Huang, W., Tricyclometalated iridium complexes as highly stable photosensitizers for light‐induced hydrogen evolution. Chemistry–A European Journal 2013, 19 (20), 6340-6349.
71. Thandu, M.; Comuzzi, C.; Goi, D., Phototreatment of water by organic photosensitizers and comparison with inorganic semiconductors. International Journal of Photoenergy 2015, 2015, 521367.
72. Kwiatkowski, S.; Knap, B.; Przystupski, D.; Saczko, J.; Kędzierska, E.; Knap-Czop, K.; Kotlińska, J.; Michel, O.; Kotowski, K.; Kulbacka, J., Photodynamic therapy–mechanisms, photosensitizers and combinations. Biomedicine & pharmacotherapy 2018, 106, 1098-1107.
73. Li, X.; Zheng, B.-D.; Peng, X.-H.; Li, S.-Z.; Ying, J.-W.; Zhao, Y.; Huang, J.-D.; Yoon, J., Phthalocyanines as medicinal photosensitizers: Developments in the last five years. Coordination Chemistry Reviews 2019, 379, 147-160.
74. Loh, T. Y.; Cohen, P. R., Ketoprofen-induced photoallergic dermatitis. The Indian journal of medical research 2016, 144 (6), 803-806.
75. Li, Z.; Torgersen, J.; Ajami, A.; Mühleder, S.; Qin, X.; Husinsky, W.; Holnthoner, W.; Ovsianikov, A.; Stampfl, J.; Liska, R., Initiation efficiency and cytotoxicity of novel water-soluble two-photon photoinitiators for direct 3D microfabrication of hydrogels. RSC advances 2013, 3 (36), 15939-15946.
76. Wei, Y.-Y.; Sun, X.-T.; Xu, Z.-R., One-step synthesis of bifunctional PEGDA/TiO2 composite film by photopolymerization for the removal of Congo red. Applied Surface Science 2018, 445, 437-444.
77. Verbitsky, L.; Waiskopf, N.; Magdassi, S.; Banin, U., A clear solution: semiconductor nanocrystals as photoinitiators in solvent free polymerization. Nanoscale 2019, 11 (23), 11209-11216.
78. Łabuz, P.; Gryboś, J.; Pietrzyk, P.; Sobańska, K.; Macyk, W.; Sojka, Z., Photogeneration of reactive oxygen species over ultrafine TiO 2 particles functionalized with rutin–ligand induced sensitization and crystallization effects. Research on Chemical Intermediates 2019, 45 (12), 5781-5800.
79. Derfus, A. M.; Chan, W. C.; Bhatia, S. N., Probing the cytotoxicity of semiconductor quantum dots. Nano letters 2004, 4 (1), 11-18.
80. Tsoi, K. M.; Dai, Q.; Alman, B. A.; Chan, W. C., Are quantum dots toxic? Exploring the discrepancy between cell culture and animal studies. Accounts of chemical research 2013, 46 (3), 662-671.
81. Wu, S.; Weng, Z.; Liu, X.; Yeung, K.; Chu, P. K., Functionalized TiO2 based nanomaterials for biomedical applications. Advanced functional materials 2014, 24 (35), 5464-5481.
82. López-Huerta, F.; Cervantes, B.; González, O.; Hernández-Torres, J.; García-González, L.; Vega, R.; Herrera-May, A. L.; Soto, E., Biocompatibility and surface properties of TiO2 thin films deposited by DC magnetron sputtering. Materials 2014, 7 (6), 4105-4117.
83. Yu, X.; Sun, M.; He, J.; Wang, H.; Yu, M.; Dong, L., Accelerated Neurite Outgrowth and Neurogenesis of PC12 Cells on an Fe-doped TiO2 Nanorod Film Triggered by Visible Light. ACS Biomaterials Science & Engineering 2021, 7 (2), 577-585.
84. Guo, H.; Klose, D.; Hou, Y.; Jeschke, G.; Burgert, I., Highly efficient UV protection of the biomaterial wood by a transparent TiO2/Ce xerogel. ACS applied materials & interfaces 2017, 9 (44), 39040-39047.
85. Li, J.; Ma, W.; Chen, C.; Zhao, J.; Zhu, H.; Gao, X., Photodegradation of dye pollutants on one-dimensional TiO2 nanoparticles under UV and visible irradiation. Journal of molecular catalysis A: Chemical 2007, 261 (1), 131-138.
86. Kumar, D. P.; Kumari, V. D.; Karthik, M.; Sathish, M.; Shankar, M., Shape dependence structural, optical and photocatalytic properties of TiO2 nanocrystals for enhanced hydrogen production via glycerol reforming. Solar Energy Materials and Solar Cells 2017, 163, 113-119.
87. Luksiene, Z., Photodynamic therapy: mechanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas, Lithuania) 2003, 39 (12), 1137-1150.
88. Liu, Z.; Zhang, J.; Liu, J.; Long, Y.; Fang, L.; Wang, Q.; Liu, T., Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. Journal of Materials Chemistry A 2020, 8 (13), 6219-6228.
89. Yu, J.; Xu, X.; Yao, F.; Luo, Z.; Jin, L.; Xie, B.; Shi, S.; Ma, H.; Li, X.; Chen, H., In situ covalently cross-linked PEG hydrogel for ocular drug delivery applications. International journal of pharmaceutics 2014, 470 (1-2), 151-157.
90. Morales-Hurtado, M.; Zeng, X.; Gonzalez-Rodriguez, P.; Ten Elshof, J. E.; van der Heide, E., A new water absorbable mechanical Epidermal skin equivalent: The combination of hydrophobic PDMS and hydrophilic PVA hydrogel. Journal of the mechanical behavior of biomedical materials 2015, 46, 305-317.
91. Sai, H.; Erbas, A.; Dannenhoffer, A.; Huang, D.; Weingarten, A.; Siismets, E.; Jang, K.; Qu, K.; Palmer, L. C.; De La Cruz, M. O., Chromophore amphiphile–polyelectrolyte hybrid hydrogels for photocatalytic hydrogen production. Journal of Materials Chemistry A 2020, 8 (1), 158-168.
92. Keshawy, M.; Mahmoud, A.-R.; Abdel-Raouf, M. E.-S., Polystyrene-based magnetic hydrogels for elimination of some toxic metal cations from aqueous solutions. Environmental Science and Pollution Research 2020, 27 (21), 26982-26997.
93. Carvalho, M. R.; Maia, F. R.; Vieira, S.; Reis, R. L.; Oliveira, J. M., Tuning enzymatically crosslinked silk fibroin hydrogel properties for the development of a colorectal cancer extravasation 3D model on a chip. Global Challenges 2018, 2 (5-6), 1700100.
94. Song, R.; Zheng, J.; Liu, Y.; Tan, Y.; Yang, Z.; Song, X.; Yang, S.; Fan, R.; Zhang, Y.; Wang, Y., A natural cordycepin/chitosan complex hydrogel with outstanding self-healable and wound healing properties. International journal of biological macromolecules 2019, 134, 91-99.
95. Fernandes-Cunha, G. M.; Chen, K. M.; Chen, F.; Le, P.; Han, J. H.; Mahajan, L. A.; Lee, H. J.; Na, K. S.; Myung, D., In situ-forming collagen hydrogel crosslinked via multi-functional PEG as a matrix therapy for corneal defects. Scientific reports 2020, 10 (1), 16671.
96. Jing, G.; Wang, L.; Yu, H.; Amer, W. A.; Zhang, L., Recent progress on study of hybrid hydrogels for water treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 416, 86-94.
97. Niu, C.; Li, X.; Wang, Y.; Liu, X.; Shi, J.; Wang, X., Design and performance of a poly (vinyl alcohol)/silk fibroin enzymatically crosslinked semi-interpenetrating hydrogel for a potential hydrophobic drug delivery. RSC Advances 2019, 9 (70), 41074-41082.
98. Sivashanmugam, A.; Charoenlarp, P.; Deepthi, S.; Rajendran, A.; Nair, S. V.; Iseki, S.; Jayakumar, R., Injectable shear-thinning CaSO4/FGF-18-incorporated Chitin–PLGA hydrogel enhances bone regeneration in mice cranial bone defect model. ACS applied materials & interfaces 2017, 9 (49), 42639-42652.
99. Wu, C.; Ma, W.; Hua, Y., The relationship between breaking force and hydrophobic interactions or disulfide bonds involved in heat‐induced soy protein gels as affected by heating time and temperature. International journal of food science & technology 2019, 54 (1), 231-239.
100. Speroni, F.; Jung, S.; De Lamballerie, M., Effects of calcium and pressure treatment on thermal gelation of soybean protein. Journal of food science 2010, 75 (1), E30-E38.
101. Nyamukamba, P.; Okoh, O.; Mungondori, H.; Taziwa, R.; Zinya, S., Synthetic methods for titanium dioxide nanoparticles: a review. Titanium Dioxide—Material for a Sustainable Environment; Yang, D., Ed 2018, 151-175.
102. Juma, A. O.; Acik, I. O.; Mikli, V.; Mere, A.; Krunks, M., Effect of solution composition on anatase to rutile transformation of sprayed TiO2 thin films. Thin Solid Films 2015, 594, 287-292.
103. Galizia, P.; Maizza, G.; Galassi, C., Heating rate dependence of anatase to rutile transformation. Processing and Application of Ceramics 2016, 10 (4), 235-241.
104. Ohtani, B.; Prieto-Mahaney, O.; Li, D.; Abe, R., What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. Journal of Photochemistry and Photobiology A: Chemistry 2010, 216 (2-3), 179-182.
105. Perales-Martínez, I. A.; Rodríguez-González, V., Towards the hydrothermal growth of hierarchical cauliflower-like TiO 2 anatase structures. Journal of Sol-Gel Science and Technology 2017, 81 (3), 741-749.
106. Zhang, J.; Zhou, P.; Liu, J.; Yu, J., New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics 2014, 16 (38), 20382-20386.
107. Yun, H. J.; Lee, H.; Joo, J. B.; Kim, W.; Yi, J., Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. The Journal of Physical Chemistry C 2009, 113 (8), 3050-3055.
108. Yun, H. J.; Lee, H.; Joo, J. B.; Kim, N. D.; Yi, J., Effect of TiO2 nanoparticle shape on hydrogen evolution via water splitting. Journal of nanoscience and nanotechnology 2011, 11 (2), 1688-1691.
109. Fang, J.; Li, H., A facile way to tune mechanical properties of artificial elastomeric proteins-based hydrogels. Langmuir 2012, 28 (21), 8260-8265.
110. Jagadeesh, D.; Reddy, D. J. P.; Rajulu, A. V., Preparation and properties of biodegradable films from wheat protein isolate. Journal of Polymers and the Environment 2011, 19 (1), 248-253.
111. Gea, M.; Bonetta, S.; Iannarelli, L.; Giovannozzi, A. M.; Maurino, V.; Bonetta, S.; Hodoroaba, V.-D.; Armato, C.; Rossi, A. M.; Schilirò, T., Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells. Food and Chemical Toxicology 2019, 127, 89-100.
112. Cervantes, B.; López-Huerta, F.; Vega, R.; Hernández-Torres, J.; García-González, L.; Salceda, E.; Herrera-May, A. L.; Soto, E., Cytotoxicity evaluation of anatase and rutile TiO2 thin films on CHO-K1 cells in vitro. Materials 2016, 9 (8), 619.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top