|
[1]He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [2]Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). [3]Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., ... & Ng, A. Y. (2019, July). Chexpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 590-597). [4]Allaouzi, I., & Ahmed, M. B. (2019). A novel approach for multi-label chest X-ray classification of common thorax diseases. IEEE Access, 7, 64279-64288. [5]Sorower, M. S. (2010). A literature survey on algorithms for multi-label learning. Oregon State University, Corvallis, 18, 1-25. [6]Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874. [7]He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9729-9738). [8]Rajan, D., Thiagarajan, J. J., Karargyris, A., & Kashyap, S. (2021, February). Self-training with improved regularization for sample-efficient chest x-ray classification. In Medical Imaging 2021: Computer-Aided Diagnosis (Vol. 11597, p. 115971S). International Society for Optics and Photonics.
|