跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.173) 您好!臺灣時間:2023/10/02 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱陳彬
研究生(外文):Ju, Chern-Bin
論文名稱:基於卷積神經網路的市場結構圖像方法建構交易策略
論文名稱(外文):Development of Trading Strategies with Structure of Market Activities Image Based on Convolutional Neural Networks
指導教授:陳安斌陳安斌引用關係
指導教授(外文):Chen, An-Pin
口試委員:蔡垂雄劉敦仁黃思皓陳安斌姜林杰祐
口試委員(外文):Tsai, Chwei-ShyongLiu, Duen-RenHuang, Szu-HaoChen, An-PinChiangLin, Chieh-Yow
口試日期:2022-08-10
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:107
中文關鍵詞:卷積神經網路金融時間序列預測市場輪廓理論市場結構圖交易策略時間因果價格變化趨勢分類
外文關鍵詞:Convolutional neural networkFinancial time series forecastingMarket ProfileStructure of market activities imageTrading StrategiesTemporal causalityPrice movement classification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:71
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究嘗試以人工智慧中深度學習方法,卷積神經網路建立趨勢分類模型,辨識市場趨勢延續或反轉的行為,以此建構順勢與逆勢交易策略,嘗試建構出能在市場中投資獲利的策略。
文獻指出,大部分的深度學習研究使用遞歸神經網路系列的模型進行金融時間序列預測,然而,這些研究大部分皆以原始的時間序列資料作為模型的輸入,市場中存在著交易目的不同參與者,如投機、避險或套利等,因為他們的交易週期不同,原始時間序列資料中容易潛藏著許多影響模型學習的雜訊。為了避免在建立模型學習過多的雜訊,本研究提出市場結構圖像,先以市場輪廓理論為基礎,將金融時間序列資料中的交易活動轉換成市場輪廓結構,這種結構易於發現趨勢主導者的行為。此外,考量金融市場為一動態環境,特徵值發生的先後順序也應視為造成趨勢變化的一個因果,為了使模型能學習特徵值的時間因果關係,在轉換結構圖形的過程中,將以不同的灰階值呈現不同時間發生的市場交易活動。本研究共設計5種灰階市場結構圖像,不同的圖像將關注不同時間週期的市場活動。為避免人工介入進行特徵工程,本研究利用卷積神經網路訓練趨勢變化分類模型,此網路能於圖像卷積的過程,自動萃取圖像中與金融市場趨勢變化的相關的重要的特徵值。
考量不同投資人具有不同的交易風格、風險偏好與本金,本研究根據訓練後的趨勢變化分類模型,建構了順勢交易策略及逆勢交易策略,並加入部位管理與風險管理方法,以美國標普500 E-mini期貨進行實證研究。研究結果顯示,以具時間因果特徵值之灰階市場結構圖像,訓練卷積神經網路模型,能發現趨勢延續或反轉的行為,建構出的順勢交易策略其獲利能力與風險表現皆能顯著優於較不具時間因果的圖像以及隨機交易模型。
This study attempted to identify the trend continuation or reversal behavior using deep learning method, convolutional neural network (CNN), to build a trend classification model, and developed trading strategies that could make profits in the financial market.
Literature indicated that most deep learning studies used recurrent neural network and its variants for financial time series prediction due to their internal memory cell that could process incoming input with the previous states. However, most of the research used the raw time series data as learning features. There were many participants with diverse trading timeframe in the market. In addition, they had distinct purposes such as arbitraging, hedging, or speculating, resulting in plenty of noise in the raw time series data. To solve this problem, we proposed the structure of market activities image which converted financial time series into bell-shape representation based on Market Profile theory so that the majority activities of trend dominators could be detected. Furthermore, considering the financial market is dynamic, the order of occurrence of the feature in the structure image should also be considered as a cause and effect of the trend changes. Therefore, five types of grayscale structure image were designed, focusing on distinct timeframe of market participants. To learn important features in structure image related to financial market trend changes, this study employed the CNN that could extract features automatically during the convolutional process.
The experimental results of momentum trading based on model demonstrated statistically significant differences in profitability and risk performance and indicated CNN trained with proposed grayscale structure image could applied for discovering trend continuation or reversal behavior and development of trading strategies.
摘要 i
Abstract ii
誌謝 iii
目 錄 iv
圖目錄 vii
表目錄 ix
第一章 緒論 1
1.1研究背景與動機 1
1.2研究目的 6
1.3研究限制 8
1.4研究流程 8
1.5論文架構 10
第二章 文獻探討 11
2.1 機器學習與深度學習 11
2.1.1卷積神經網路 12
2.1.2遞歸神經網路 14
2.1.3長短期記憶網路 15
2.2 市場輪廓理論 17
2.2.1市場參與者 18
2.2.2市場輪廓圖及其特徵 19
2.2.3市場活動 21
2.2.4市場輪廓圖TPO分布型態 22
2.3 技術分析 26
2.3.1道氏理論 26
2.3.2型態與技術指標分析 28
2.4 機器學習預測金融時間序列 30
2.4.1機器學習預測金融時間序列相關文獻 31
第三章 研究方法 33
3.1研究架構 33
3.2研究資料來源與期間 35
3.3資料前置處理 35
3.3.1市場輪廓TPO圖 36
3.3.2灰階市場結構圖 36
3.3.3結構A 38
3.3.4結構B 39
3.3.5結構C 40
3.3.6結構D 41
3.3.7結構E 42
3.3.8移動視窗 43
3.4輸出變數處理 43
3.4.1 順勢交易模型輸出變數 44
3.4.2 逆勢交易模型輸出變數 45
3.5訓練環境與網路結構 48
3.5.1卷積神經網路之網路結構 48
3.6績效評估方法 48
3.6.1模型準確率評估方法 49
3.6.2勝率評估方法 49
3.6.3獲利評估方法 49
3.6.4風險評估方法 50
第四章 實驗設計 52
4.1實驗組 52
4.2對照組 53
4.3交易策略與實驗 54
4.4實驗流程範例 57
4.4.1模型輸入資料建立 58
4.4.2模型輸出變數標註 62
4.4.3卷積神經網路訓練 62
4.4.4模型評估 63
4.4.5交易策略建構與績效評估 63
第五章 實驗結果與分析 64
5.1 實驗結果分析 64
5.1.1模型訓練結果說明 64
5.1.2實驗A—比較堆疊結構圖像與分散結構圖像 65
5.1.3實驗B—比較訓練後之逆勢交易模型 66
5.1.4實驗C—比較訓練後之順勢交易模型 67
5.1.5實驗D—比較加入不同停損比例之逆勢交易模型績效變化 68
5.1.6實驗E—比較加入不同停損比例之順勢交易模型績效變化 72
5.1.7實驗A至實驗E小結:順勢交易模型與逆勢交易模型比較 75
5.1.8實驗F—比較加入部位管理:分批進場於逆勢交易模型績效變化 77
5.1.9實驗G—比較加入部位管理:分批進場於順勢交易模型績效變化 81
5.1.10實驗F、實驗G小結:部位管理應用順勢與逆勢交易模型 85
5.2 統計檢定 86
5.2.1模型趨勢變化分類能力檢定 86
5.2.2模型獲利能力檢定 88
第六章 結論與建議 90
6.1 結論.. 90
6.2 未來研究建議 92
參考文獻 94
附錄 97
[1] J. P. Steidlmayer, Markets and Market Logic, Chicago, Porcupine Press, 1984.
[2] C.-C. Lin, C.-S. Chen, and A.-P. Chen, "Using intelligent computing and data stream mining for behavioral finance associated with market profile and financial physics," Applied Soft Computing, vol. 68, pp. 756-764, 2018.
[3] C.-C. Chen, Y.-C. Kuo, C.-H. Huang, and A.-P. Chen, "Applying market profile theory to forecast Taiwan Index Futures market," Expert Systems with Applications, vol. 41, no. 10, pp. 4617-4624, 2014.
[4] R. L. Galvez, A. A. Bandala, E. P. Dadios, R. R. P. Vicerra, and J. M. Z. Maningo, "Object detection using convolutional neural networks," in TENCON 2018-2018 IEEE Region 10 Conference, 2018: IEEE, pp. 2023-2027.
[5] E. Hoseinzade and S. Haratizadeh, "CNNpred: CNN-based stock market prediction using a diverse set of variables," Expert Systems with Applications, vol. 129, pp. 273-285, 2019.
[6] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," nature, vol. 521, no. 7553, pp. 436-444, 2015.
[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.
[8] Y. LeCun, K. Kavukcuoglu, and C. Farabet, "Convolutional networks and applications in vision," in Proceedings of 2010 IEEE international symposium on circuits and systems, 2010: IEEE, pp. 253-256.
[9] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber, "Flexible, high performance convolutional neural networks for image classification," in Twenty-second international joint conference on artificial intelligence, 2011.
[10] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019," Applied soft computing, vol. 90, p. 106181, 2020.
[11] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
[12] H. Maqsood et al., "A local and global event sentiment based efficient stock exchange forecasting using deep learning," International Journal of Information Management, vol. 50, pp. 432-451, 2020.
[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, vol. 25, 2012.
[14] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, "Large-scale video classification with convolutional neural networks," in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2014, pp. 1725-1732.
[15] O. B. Sezer and A. M. Ozbayoglu, "Algorithmic financial trading with deep convolutional neural networks: Time series to image conversion approach," Applied Soft Computing, vol. 70, pp. 525-538, 2018.
[16] L. Deng and D. Yu, "Deep learning: methods and applications," Foundations and trends® in signal processing, vol. 7, no. 3–4, pp. 197-387, 2014.
[17] J. L. Elman, "Finding structure in time," Cognitive science, vol. 14, no. 2, pp. 179-211, 1990.
[18] M. I. Jordan, "Serial order: A parallel distributed processing approach," in Advances in psychology, vol. 121: Elsevier, 1997, pp. 471-495.
[19] M. Sundermeyer, R. Schlüter, and H. Ney, "LSTM neural networks for language modeling," in Thirteenth annual conference of the international speech communication association, 2012.
[20] K. Chen, Y. Zhou, and F. Dai, "A LSTM-based method for stock returns prediction: A case study of China stock market," in 2015 IEEE international conference on big data (big data), 2015: IEEE, pp. 2823-2824.
[21] M. Hiransha, E. A. Gopalakrishnan, V. K. Menon, and K. Soman, "NSE stock market prediction using deep-learning models," Procedia computer science, vol. 132, pp. 1351-1362, 2018.
[22] K. Khare, O. Darekar, P. Gupta, and V. Attar, "Short term stock price prediction using deep learning," in 2017 2nd IEEE international conference on recent trends in electronics, information & communication technology (RTEICT), 2017: IEEE, pp. 482-486.
[23] X. Zhang and Y. Tan, "Deep stock ranker: A LSTM neural network model for stock selection," in International conference on data mining and big data, 2018: Springer, pp. 614-623.
[24] J. F. Dalton, E. T. Jones., Robert, R. B. Dalton, Mind Over Markets: Power Trading with Market Generated Information, 2nd ed. Traders Press, 1999.
[25] Robert Rhea, The Dow Theory, Barron’s, 1932.
[26] B. Penfold, The Universal Tactics of Successful Trend Trading: Finding Opportunity in Uncertainty, 1st ed. Wiley, 2020.
[27] J. Magee, R. D. Edwards and W.H.C. Bassetti, Technical Analysis of Stock Trends, 9th ed, New York, AMACOM, 2018.
[28] J. E. Granville, New key to stock market profits. PrenticeHall, 1963.
[29] M. M. Kumbure, C. Lohrmann, P. Luukka, and J. Porras, "Machine learning techniques and data for stock market forecasting: a literature review," Expert Systems with Applications, p. 116659, 2022.
[30] J. Welles Wilder, New Concepts in Technical Trading Systems, TREND RESEARCH, 1978.
[31] I. K. Nti, A. F. Adekoya, and B. A. Weyori, "A systematic review of fundamental and technical analysis of stock market predictions," Artificial Intelligence Review, vol. 53, no. 4, pp. 3007-3057, 2020.
[32] Q. Cao, K. B. Leggio, and M. J. Schniederjans, "A comparison between Fama and French's model and artificial neural networks in predicting the Chinese stock market," Computers & Operations Research, vol. 32, no. 10, pp. 2499-2512, 2005.
[33] S. T. A. Niaki and S. Hoseinzade, "Forecasting S&P 500 index using artificial neural networks and design of experiments," Journal of Industrial Engineering International, vol. 9, no. 1, pp. 1-9, 2013.
[34] Z. Rustam and P. Kintandani, "Application of support vector regression in indonesian stock price prediction with feature selection using particle swarm optimisation," Modelling and Simulation in Engineering, vol. 2019, 2019.
[35] J. Zhang et al., "Can the exchange rate be used to predict the shanghai composite index?," IEEE Access, vol. 8, pp. 2188-2199, 2019.
[36] W. F. Sharpe, "The sharpe ratio," Streetwise–the Best of the Journal of Portfolio Management, pp. 169-185, 1998.
[37] J. M.-T. Wu, S.-H. Lin, J.-H. Syu, and M.-E. Wu, "Embedded draw-down constraint reward function for deep reinforcement learning," Applied Soft Computing, vol. 125, p. 109150, 2022.
[38] E. F. Fama, "Efficient capital markets: A review of theory and empirical work," The journal of Finance, vol. 25, no. 2, pp. 383-417, 1970.
[39] E. F. Fama, "Random walks in stock market prices," Financial analysts journal, vol. 51, no. 1, pp. 75-80, 1995.
[40] 黃閔淞,「應用自組織映射神經網路進行公司動態財務行為之體質檢定」,國立交通大學,資訊管理研究所碩士論文,2008年。
[41] 王志鈞,笑笑看線圖:跟著六大名師學技術分析,早安財經文化有限公司,2010年。
[42] 林茂昌,我的職業是股東,早安財經文化有限公司,2018年。
[43] 查欣瑜,「法人籌碼對台股未來走勢影響之研究」,國立交通大學,財務金融研究所碩士論文,2011年。
[44] 郭怡君,「應用市場輪廓於台指期市場行為發現之研究」,國立交通大學,資訊管理所碩士論文,2012年。
電子全文 電子全文(網際網路公開日期:20250830)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top