跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/30 18:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐佑誠
研究生(外文):Hsu, Yu-Cheng
論文名稱:利用基板表面修飾與調控反應空間合成大面積高密度之全無機鈣鈦礦奈米線陣列
論文名稱(外文):Synthesis large area and high density of all-inorganic perovskite nanowire arrays by modifying substrate surface and manipulating reaction space
指導教授:楊斯博
指導教授(外文):Yang, Zu-Po
口試委員:楊斯博李亞儒簡靖航徐旭政
口試委員(外文):Yang, Zu-PoLee, Ya-JuChien, Ching-HangHsu, Hsu-Cheng
口試日期:2022-08-15
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:86
中文關鍵詞:飽和蒸氣輔助結晶PDMS基板全無機鈣鈦礦奈米線陣列表面修飾
外文關鍵詞:Saturated vapor-assisted crystallizationPolydimethylsiloxane substrateall-inorganic perovskitenanowire arrayssurface modification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以「飽和氣相反溶劑法」為基礎,即將蒸氣狀態的反溶劑與含有全無機鈣鈦礦前驅物的前體液進行溶合,混合後的溶劑對前驅物的溶解度下降,經過加熱乾燥後將達到過飽和狀態,誘導前驅物成核並生長成晶體。此方法可以成長高品質全無機鈣鈦礦晶體,然無法控制全無機鈣鈦礦晶體的形狀、尺寸、排列。本實驗室先前已結合微通道的毛細現象,並使用具奈米尺度溝槽狀的PDMS基板,當溶劑蒸發時沿著固定的路徑收縮,在基板溝槽內結晶方向一致且規則排列的線狀鈣鈦礦,形成大面積、有序的奈米線陣列。但在此製程條件所生長的奈米線密度不高、分布不均,且帶有許多顆粒狀副產物而影響奈米線的完整度。為了提高奈米線的結晶密度並抑制副產物的生成,我們嘗試各種方法將原有的基板進行表面修飾,提高奈米線密度。在此條件下,更進一步透過調控溶劑的反應空間,增加其停留在基板的時間,使奈米線的結晶效率最大化,成功合成出大面積、有序、高密度、均勻分布且不含顆粒的奈米線陣列。最終我們將奈米線轉移至其他目標基板,進行各種觀察與量測,以及分析奈米線的形貌、光學特性,並探討其結晶機制與應用範圍。
This thesis aims for development of large-area and high-density all-inorganic perovskite nanowire arrays based on a method called “saturated vapor-assisted crystallization,” which can synthesis various types of low-dimensional perovskite crystals, such as nanowires, nano-plates, etc. For this method, the anti-solvent vapors are introduced into the perovskite precursor to decrease perovskite solubility and then the precursor becomes supersaturation. Then the perovskite nucleates in this supersaturation solution crystalize into various types of low-dimensional perovskite crystal during the precursor drying. However, the shape, size and arrangement of crystals were uncontrollable. To overcome this problem, our team has demonstrated the well-aligned perovskite nanowire array by introducing a nanoscale-groove PDMS substrate into saturated vapor-assisted crystallization method. The well-aligned perovskite nanowires grow along the nanoscale grooves as the perovskite precursor evaporates and its area shrinks. Finally, the large-area, well-aligned perovskite nanowire array accompanying with some perovskite particles are obtained. However, the distribution of perovskite nanowire arrays are not dense and uniform. To further improve this issue about distribution density and uniformity as well as to suppress the perovskite particles, we modified the affinity of substrate surface by different surface treatments. With appropriate surface treatment, the density and uniformity of perovskite nanowire arrays are improved and the perovskite nanoparticles are almost eliminated. After the surface treatment, we further maximize the density and uniformity of perovskite nanowire arrays by manipulating the reaction space to slow down the evaporation rate of precursor. Consequently, we successfully synthesized large-area, periodic and well-aligned, high-density and uniform distribution, and particle-free perovskite nanowire arrays. For showing the potential applications of perovskite nanowire arrays, we also demonstrated that the perovskite nanowire arrays can be transferred on the other target substrates. Finally, we not only analyzed morphology and optical properties of perovskite nanowire arrays, but also investigated the both mechanisms of surface treatment and control of reaction space.
摘要................................................................................………………………................. i
Abstract…………………………………………………………………………….…...... ii
目錄................................................................................………………....………........... iv
圖目錄...............................................................................………………………............ vi
表目錄…................................................................................…………………............... ix
第一章 緒論…................................................................................…………………....... 1
1-1 鈣鈦礦的合成與應用…..............................................................................…....... 1
1-2 研究動機與目的…..............................................................................……........... 3
第二章 基本原理與文獻回顧…....................................................................................... 4
2-1 鈣鈦礦結晶機制…................................................................................………..... 4
2-1-1 鈣鈦礦前體液…................................................................................……...... 4
2-1-2 接觸角…................................................................................………….......... 5
2-1-3 馬倫哥尼效應…..........................................................................………….... 6
2-1-4 古典成核理論…................................................................................……...... 7
2-1-5 飽和氣相反溶劑法原理…............................................................................ 10
2-2 鈣鈦礦微奈米線陣列…....................................................................................... 11
第三章 實驗內容…................................................................................………............. 14
3-1 實驗規劃…................................................................................………............... 14
3-2 實驗器材介紹.................................................................................................….. 15
3-3 鈣鈦礦奈米線實驗製程….....................................................................……….. 19
3-3-1 PDMS基板製作…....................................................................................... 19
3-3-2 鈣鈦礦前體液合成….................................................................................... 20
3-3-3 飽和氣相反溶劑法….................................................................................... 21
3-3-4 基板表面修飾…................................................................................…….... 23
3-3-5 調控反應空間…............................................................................……….... 24
3-4 鈣鈦礦元件實驗製程........................................................................................... 27
3-4-1 奈米線轉印技術............................................................................................ 27
3-4-2 奈米線之光性量測架構................................................................................ 28
第四章 結果與討論....................................................................................................... 29
4-1 基板表面修飾對結晶的影響............................................................................... 29
4-1-1 控溫熏製法.................................................................................................... 29
4-1-2 旋塗修飾法.................................................................................................... 33
4-1-3 基板之接觸角、拉曼光譜量測.................................................................... 39
4-1-4 調控反應空間................................................................................................ 41
4-1-5 不同顏色的奈米線之形貌............................................................................ 51
4-2 奈米線之晶格結構與光性探討........................................................................... 61
4-2-1 奈米線之XRD量測..................................................................................... 61
4-2-2 奈米線之PL、反射與穿透.......................................................................... 63
第五章 結論與未來展望................................................................................................. 73
參考文獻........................................................................................................................... 74
附錄................................................................................................................................... 78
[1] 李坤穆, 江建宏, 吳春桂, "鈣鈦礦型太陽電池的新突破與機會(上) ," Oct. 2014. [Online]. Available: https://www.materialsnet.com.tw/DocView.aspx?id=17190
[2] Zhen Li, et al., "Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys," Chem. Mater., vol. 28, pp. 284−292, 2016.
[3] H. Huang, et al., "Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes," ACS Appl. Mater., vol. 7, pp. 28128-28133, Dec. 2015.
[4] J. Song, et al., "Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3)," Adv. Mater., vol. 27, pp. 7162-7167, Oct. 2015.
[5] M. V. Kovalenko, et al., "Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals," Science, vol. 358, issue 6364, pp. 745-750, Nov. 2017.
[6] Z. Shi, et al., "High-Efficiency and Air-Stable Perovskite Quantum Dots Light-Emitting Diodes with an All-Inorganic Heterostructure," Nano Lett., vol. 17, pp. 313-321, Dec. 2016.
[7] X. Li, et al., "All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications," Small., vol. 13, issue 9, pp. 1603996, Jan. 2017.
[8] Cuili Gai, et al., "The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance," Energies, 2020, 13, 2.
[9] Guichuan Xing, et al., "Low-temperature solution-processed wavelength-tunable perovskites for lasing," Nature Materials, vol. 13, pp. 476–480, 2014.
[10] Sergii Yakunin, et al., "Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites," Nature Communications, vol. 6, pp. 8056, 2015.
[11] L. Protesescu, et al., "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Lett., vol. 6, pp. 3692-3696, Jan. 2015.
[12] Tao Fang, et al., " Perovskite QLED with an external quantum efficiency of over 21% by modulating electronic transport," Science Bulletin 66 (2021) 36–4.
[13] Can Zou, et al., "A high-performance polarization-sensitive and stable self-powered UV photodetector based on a dendritic crystal lead-free metal-halide CsCu2I3/GaN heterostructure," Mater. Horiz., 2022,9, 1479-1488
[14] Kidong Park, et al., "Light–Matter Interactions in Cesium Lead Halide Perovskite Nanowire Lasers," J. Phys. Chem. Lett., vol. 7(18), pp. 3703-3710, 2016.
[15] Hong Zhou, et al., "Vapor Growth and Tunable Lasing of Band Gap Engineered Cesium Lead Halide Perovskite Micro/Nanorods with Triangular Cross Section," ACS Nano, vol. 11, pp. 1189-1195, 2017.
[16] Muhammad Shoaib, et al., "Directional Growth of Ultralong CsPbBr3 Perovskite Nanowires for High-Performance Photodetectors," J. Am. Chem. Soc., vol. 139, pp. 15592-15595, 2017.
[17] Haihua Zhang, et al., "Pure zero-dimensional Cs4PbBr6 single crystal rhombohedral microdisks with high luminescence and stability," Phys. Chem. Chem. Phys., vol. 19, pp. 29092–29098, 2017.
[18] Xianxiong He, et al., "Multi-color perovskite nanowire lasers through kinetically controlled solution growth followed by gas-phase halide exchange," J. Mater. Chem. C, vol. 5, pp. 12707–12713, 2017.
[19] Xiuzhen Xu, et al., "Saturated Vapor-Assisted Growth of Single-Crystalline Organic–Inorganic Hybrid Perovskite Nanowires for High-Performance Photodetectors with Robust Stability," ACS Appl. Mater. Interfaces, vol. 10, pp. 10287–10295, 2018.
[20] Xuemin Shen, et al., "Lasing behaviors in solution processed all-inorganic CsPbBr3 perovskite microsized crystals," Optics Communications, vol. 453, pp. 124354, 2019.
[21] Qitao Zhou, et al., "Nanochannel-Assisted Perovskite Nanowires: From Growth Mechanisms to Photodetector Applications," ACS Nano, vol. 12, pp. 8406-8414, 2018.
[22] Shuang Pan, et al., "Rapid Capillary-Assisted Solution Printing of Perovskite Nanowire Arrays Enables Scalable Production of Photodetectors," Angew. Chem. Int. Ed., vol. 59, pp. 2-10, 2020.
[23] 楊富婷(2021),實現與研究以飽和蒸氣輔助結晶法製作鈣鈦礦奈米線陣列 及其於雷射之應用。國立交通大學照明與能源光電研究所碩士論文,取自https://hdl.handle.net/11296/9rrqxy
[24] Wei Li, et al., "Inorganic perovskite light emitting diodes with ZnO as the electron transport layer by direct atomic layer deposition," Organic Electronics, vol. 57, pp. 60–67, 2018.
[25] Lahoucine Atourki, et al., "Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3−xIx (0 ≤ x ≤ 1)," Journal of Alloys and Compounds, vol. 702, pp. 404–409, 2017.
[26] Yue Zhang, et al., "Efficient red phosphorescent organic light emitting diodes based on solution processed all-inorganic cesium lead halide perovskite as hole transporting layer," Organic Electronics, vol. 50, pp. 411–417, 2017.
[27] Cunlong Li, et al., "Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing," Nano Energy, vol. 40, pp. 195-202, 2017.
[28] Cunlong Lia, et al., "Enhanced photoresponse of self-powered perovskite photodetector based on ZnO nanoparticles decorated CsPbBr3 films," Solar Energy Materials and Solar Cells, vol. 172, pp. 341-346, 2017.
[29] Peng Liu, et al., "Organic–Inorganic Hybrid Perovskite Nanowire Laser Arrays," ACS Nano, vol. 11, pp. 5766−5773, 2017.
[30] Xianxiong He, et al., "Patterning Multicolored Microdisk Laser Arrays of Cesium Lead Halide Perovskite," Adv. Mater., vol. 29(12), pp. 1604510, 2017.
[31] Stepan Demchyshyn, et al., "Confining metal-halide perovskites in nanoporous thin films," Science Advances, vol. 3(8), pp. e1700738, 2017.
[32] Sebastian Z. Oener, et al., "Perovskite Nanowire Extrusion," Nano Lett., vol. 17, pp. 6557-6563, 2017.
[33] Parisa Khoram, et al., "Surface recombination velocity of methylammonium lead bromide nanowires in anodic aluminium oxide templates," Mol. Syst. Des. Eng., vol. 3, pp. 723-728, 2018.
[34] Sunihl Ma, et al., "Strain-Mediated Phase Stabilization: A New Strategy for Ultrastable α-CsPbI3 Perovskite by Nanoconfined Growth," Small, vol. 15(12), pp. 1900219, 2019.
[35] Sangchul Lee, et al., "Nanoconfined Crystallization of MAPbI3 to Probe Crystal Evolution and Stability," Crystal Growth & Design, vol. 16(8), pp. 4744-4751, 2016.
[36] Andrey A. Gurtovenko and Jamshed Anwar, "Modulating the Structure and Properties of Cell Membranes: The Molecular Mechanism of Action of Dimethyl Sulfoxide," The Journal of Physical Chemistry B, vol. 111(35), pp. 10453-10460, 2007.
[37] Jean Berthier, Micro-Drops and Digital Microfluidics, 2nd ed. William Andrew, 2013
[38] Ashish Kumar Thokchom, et al., "Characterizing self-assembly and deposition behavior of nanoparticles in inkjet-printed evaporating solvents," Sensors and Actuators B, vol. 252, pp. 1063−1070, 2017.
[39] Hua Hu and Ronald G. Larson, "Analysis of the Effects of Marangoni Stresses on the Microflow in an Evaporating Sessile Solvent," Langmuir, vol. 21, pp. 3972−3980, 2005.
[40] 葉名倉, "晶體的生長(crystal growth)," Dec. 2008. [Online]. Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=3425
[41] Peter G. Vekilov, "The two-step mechanism of nucleation of crystals in solution," Nanoscale, vol. 2(11), pp. 2346−2357, 2010.
[42] Jerome Tchoufang Tchuindjang, Mario Sinnaeve, and Jacqueline Lecomte-Beckers, "Effects of High Solidification Rates on Segregations and Solid Phase Transformations in High Speed Steels," in 6th International Conference on Abrasion Wear Resistant Alloyed White Cast Iron for Rolling and Pulverizing Mills, 2017.
[43] Minsu Jung, et al., "Perovskite precursor solution chemistry: from fundamentals to photovoltaic applications," Chem. Soc. Rev., vol. 48(7), pp. 2011−2038, 2019.
[44] George Wm. Thomson, "The Antoine Equation for Vapor-pressure Data," Chem. Rev., vol. 38(1), pp. 1−39, 1946.
[45] Zheng Yang, et al., "Controllable Growth of Aligned Monocrystalline CsPbBr3 Microwire Arrays for Piezoelectric‐Induced Dynamic Modulation of Single‐Mode Lasing," Adv. Mater., vol. 31, pp. 1900647, 2019.
[46] Isabelle Rodriguez, et al., "Groove-assisted solution growth of lead bromide perovskite aligned nanowires: a simple method towards photoluminescent materials with guiding light properties," Mater. Chem. Front., vol. 3, pp. 1754-1760, 2019.
[47] Eugene Hecht, OPTICS, 5th ed, Pearson, 2017
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊