跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 11:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王郁惠
研究生(外文):Wang, Yu-Hui
論文名稱:空運旅客對虛擬聯程服務之需求分析
論文名稱(外文):Analysis of Air Passenger Demand for Virtual Interlining Services
指導教授:蕭傑諭蕭傑諭引用關係
指導教授(外文):Hsiao, Chieh-Yu
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:運輸與物流管理學系
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:70
中文關鍵詞:虛擬聯程巢式羅吉特模式潛在類別羅吉特模式願支付價格
外文關鍵詞:Virtual InterliningNested Logit ModelLatent Class Logit ModelWillingness to Pay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
空運旅客自行轉機逐漸帶動虛擬聯程機票發展的契機,尤其在航空公司、技術提供商和線上旅行社(OTA)合作發展的聯程保障下,更降低了自行轉機旅客的風險,虛擬聯程成為航空旅客的新選擇。本研究透過敘述性偏好法進行問卷設計與調查,應用羅吉特模式,探討哪些因素會影響旅客在線上旅行社平台選擇虛擬聯程機票,並分析不同旅客間對各虛擬聯程服務的偏好與願支付價格的差異,最後模擬提供不同虛擬聯程機票金額與服務下,不同客群的市佔率變化。
多項羅吉特與巢式羅吉特研究結果顯示,機票價格、旅行時間、虛擬聯程轉機次數、同行人數中的高齡者與兒童數之增加,旅客越不偏好選擇虛擬聯程方案。而虛擬聯程相關附加服務的提供對於旅客而言皆為正效用。潛在類別羅吉特校估結果顯示,低所得、低旅行次數的旅客相較於高所得、高旅行次數的旅客而言,對機票價格更為敏感;在旅行時間與虛擬聯程的轉機次數上,兩類的旅客皆在意旅行時間與虛擬聯程的轉機次數,但其中高所得、高旅行次數的旅客對旅行時間之願支付價格較高。至於虛擬聯程相關附加服務中,行李直掛與快速通關為兩類旅客皆在意之項目,且高所得、高旅行次數的旅客願意支付較高的金額。政策模擬分析結果顯示,應根據不同族群在意的項目做出不同的行銷策略。
Self-connecting passengers bring the opportunity for the development of Virtual Interlining. Airlines, technology providers and online travel agencies (OTA) cooperation, reducing the risk of self-connecting passengers, make the Virtual Interlining have become a new option for passengers. Therefore, this research investigates passengers' preference for choosing virtual interline tickets on online ticketing platforms using stated-preference data. The data was modeled by multinomial logit model, nested logit model and latent class logit model to analyze the heterogeneity of passengers, then estimates passengers’ willingness to pay for travel time and Virtual Interlining services. The results of the multinomial logit model and nested logit model show that when airline ticket, travel time, number of virtual transfers, and the number of elderly and children traveling together increase, passengers are less likely to opt for Virtual Interlining tickets. However, when providing Virtual Interlining services, including baggage interline, e-Gate, and flight insurance are all positive effects for passengers. In the latent class logit model, the results show that passengers with lower income and fewer annual number of trips are more sensitive to ticket prices. Both groups care about the travel time and the number of transfers on the Virtual Interlining flight, and the passengers with higher monthly income and more trips are willing to pay higher prices for the travel time. As for the Virtual Interlining services, two groups have different willingness to pay for services. Finally, through policy simulation analysis, the impact of changing ticket prices and each Virtual Interlining service on the market share is simulated. The results show that changes in the price or services have different effects on different groups.
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究範圍與對象 4
1.4 研究流程 4
第二章 文獻回顧 7
2.1 自行轉機與虛擬聯程研究 7
2.1.1 虛擬聯程服務 7
2.1.2 自行轉機潛力 9
2.2 航空客運需求模式 13
2.3 旅運者機票選擇行為 13
2.4 小結 17
第三章 研究方法 19
3.1 敘述性偏好法 19
3.1.1 直交設計 20
3.2 個體選擇模式 20
3.2.1 多項羅吉特模式 21
3.2.2 巢式羅吉特模式 21
3.2.3 潛在類別羅吉特模式 22
第四章 研究設計 24
4.1 問卷設計 24
4.1.1 問卷第一部分 24
4.1.2 問卷第二部分 25
4.1.3 問卷第三部分 31
4.1.4 問卷第四部分 32
4.2 調查計畫 33
4.2.1 調查目的與對象 33
4.2.2 調查期間與地點 33
4.2.3 樣本資料之檢定 34
第五章 模式校估與應用 35
5.1 基本敘述統計 35
5.1.1 社會經濟資料統計 35
5.1.2 旅次特性資料統計 36
5.1.3 旅客平時與出國習慣資料統計 37
5.1.4 旅客對轉機了解程度與認知 39
5.2 羅吉特模式 40
5.2.1 變數說明 41
5.2.2 多項羅吉特模式校估結果 42
5.2.3 巢式羅吉特模式校估結果 44
5.2.4 潛在類別羅吉特模式校估結果 46
5.2.5 羅吉特模式校估結果比較 48
5.3 彈性與願支付價格分析 49
5.3.1 彈性分析 49
5.3.2 願支付價格分析 51
5.4 政策情境模擬分析 52
第六章 結論與建議 59
6.1 結論 59
6.2 建議 60
6.2.1 對於機場、航空公司及線上旅行社之建議 60
6.2.2 給予後續研究之建議 60
參考文獻 62
附錄 65
附錄一、直交表配對結果 65
附錄二、問卷形式說明 68
英文文獻
Cattaneo, M., Malighetti, P., Paleari, S., & Redondi, R. (2017). Evolution of the European network and implications for self-connection. Journal of Air Transport Management, 65, 18-28.
Chang, Y.-C., Lee, W.-H., & Wu, C.-H. (2019). Potential opportunities for Asian airports to develop self-connecting passenger markets. Journal of Air Transport Management, 77, 7-16.
Choi, J. H., Wang, K., Xia, W., & Zhang, A. (2019). Determining factors of air passengers’ transfer airport choice in the Southeast Asia–North America market: Managerial and policy implications. Transportation Research Part A: Policy and Practice, 124, 203-216.
de Luca, S. (2012). Modelling airport choice behaviour for direct flights, connecting flights and different travel plans. Journal of transport geography, 22, 148-163.
Fowkes, T., & Wardman, M. (1988). The design of stated preference travel choice experiments: with special reference to interpersonal taste variations. Journal of transport economics and policy, 27-44.
Freund-Feinstein, U., & Bekhor, S. (2017). An airline itinerary choice model that includes the option to delay the decision. Transportation Research Part A: Policy and Practice, 96, 64-78.
Green, P. E., & Srinivasan, V. (1978). Conjoint analysis in consumer research: issues and outlook. Journal of consumer research, 5(2), 103-123.
Greene, W. H., & Hensher, D. A. (2003). A latent class model for discrete choice analysis: contrasts with mixed logit. Transportation Research Part B: Methodological, 37(8), 681-698.
Hensher, D. A., & Greene, W. H. (2002). Specification and estimation of the nested logit model: alternative normalisations. Transportation Research Part B: Methodological, 36(1), 1-17.
Hess, S., Adler, T., & Polak, J. W. (2007). Modelling airport and airline choice behaviour with the use of stated preference survey data. Transportation Research Part E: Logistics and Transportation Review, 43(3), 221-233.
Hess, S., & Polak, J. W. (2006). Airport, airline and access mode choice in the San Francisco Bay area. Papers in regional Science, 85(4), 543-567.
Hsiao, C.-Y., & Hansen, M. (2011). A passenger demand model for air transportation in a hub-and-spoke network. Transportation Research Part E: Logistics and Transportation Review, 47(6), 1112-1125.
ICF. (2017). Win or Lose:The Airport Opportunity in the Growing Self-Connecting Passenger Market.
ICF. (2019). Are self-connections ready to enter the mainstream? .
Jung, S.-Y., Kim, B.-J., & Yoo, K.-E. (2017). Passenger Choice Behavior between Direct and Transit Flights—A Case Study on Passengers Using Hub Airports in the Northeast Asian Region. Journal of Traffic and Transportation Engineering, 5, 260-270.
Kroes, E. P., & Sheldon, R. J. (1988). Stated preference methods: an introduction. Journal of transport economics and policy, 11-25.
Loo, B. P. (2008). Passengers’ airport choice within multi-airport regions (MARs): some insights from a stated preference survey at Hong Kong International Airport. Journal of transport geography, 16(2), 117-125.
Malighetti, P., Paleari, S., & Redondi, R. (2008). Connectivity of the European airport network:“Self-help hubbing” and business implications. Journal of Air Transport Management, 14(2), 53-65.
McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior.
McFadden, D. (1977). Modelling the choice of residential location.
Meire, S., & Derudder, B. (2021). Virtual interlining within the European airport network: An airfare analysis. Journal of Air Transport Management, 94, 102073.
OAG. (2016). Self-connection: The Rise and Roadblocks of a Growing Travel Booking Strategy.
OAG. (2021). The Art of Virtual Interlining: Rebooting the Self-Connection Model.
Proussaloglou, K., & Koppelman, F. S. (1999). The choice of air carrier, flight, and fare class. Journal of Air Transport Management, 5(4), 193-201.
Soyk, C., Ringbeck, J., & Spinler, S. (2017). Long-haul low cost airlines: Characteristics of the business model and sustainability of its cost advantages. Transportation Research Part A: Policy and Practice, 106, 215-234.
Suau-Sanchez, P., Voltes-Dorta, A., & Rodríguez-Déniz, H. (2016). Measuring the potential for self-connectivity in global air transport markets: Implications for airports and airlines. Journal of transport geography, 57, 70-82.
Teichert, T., Shehu, E., & von Wartburg, I. (2008). Customer segmentation revisited: The case of the airline industry. Transportation Research Part A: Policy and Practice, 42(1), 227-242.
Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.
Voltes Dorta, A., & Martín Hernández, J. C. (2019). The option of self-connection. Air Transport-A Tourism Perspective.
Walker, J., & Ben-Akiva, M. (2002). Generalized random utility model. Mathematical social sciences, 43(3), 303-343.
Warburg, V., Bhat, C., & Adler, T. (2006). Modeling demographic and unobserved heterogeneity in air passengers’ sensitivity to service attributes in itinerary choice. Transportation Research Record, 1951(1), 7-16.
Wei, W., & Hansen, M. (2006). An aggregate demand model for air passenger traffic in the hub-and-spoke network. Transportation Research Part A: Policy and Practice, 40(10), 841-851.
Wen, C.-H., Wang, W.-C., & Fu, C. (2012). Latent class nested logit model for analyzing high-speed rail access mode choice. Transportation Research Part E: Logistics and Transportation Review, 48(2), 545-554.
Wilken, D., Berster, P., & Gelhausen, M. C. (2016). Analysis of demand structures on intercontinental routes to and from Europe with a view to identifying potential for new low-cost services. Journal of Air Transport Management, 56, 79-90.
Yang, C.-W., Lu, J.-L., & Hsu, C.-Y. (2014). Modeling joint airport and route choice behavior for international and metropolitan airports. Journal of Air Transport Management, 39, 89-95.

中文文獻
蕭傑諭與陳薈予(2019),航線與航空公司選擇模式─航空公司合併對旅運者福利之影響分析,中華民國運輸學會2019 年年會暨學術論文國際研討會。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top