跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/03/16 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張壬奎
研究生(外文):Chang, Jen-Kuei
論文名稱:以改良的氧化鋯鉿鐵電鰭式記憶體來實現可靠的多位元操作
論文名稱(外文):Improved HfZrO2 Fe-FinFET Memory to Realizing Highly-Reliable Multi-bit Operation
指導教授:莊紹勳郭治群
指導教授(外文):Chung, Shao-ShiunGuo, Jyh-Chyurn
口試委員:林鴻志張廖貴術莊紹勳郭治群
口試委員(外文):Lin, Horng-ChihChangLiao, Kuei-ShuChung, Shao-ShiunGuo, Jyh-Chyurn
口試日期:2022-01-14
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:63
中文關鍵詞:內嵌式鐵電記憶體HZO鐵電鰭式電晶體界面層提升極化量可靠度
外文關鍵詞:embedded ferroelectric memoryHZO Fe-FinFETinterfacial layerpolarization improvementreliability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
致謝 v
Contents vi
Figure Captions viii
Table Captions xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation of This Work 2
1.3 Organization of The Thesis 3
Chapter 2 Basic Characteristics of Ferroelectric HZO 4
2.1 Introduction of Ferroelectricity in HZO 4
2.2 Thickness Dependent on Ferroelectric HZO 5
2.3 Impact of Zr Concentration in Ferroelectric HZO Thin Films 5
2.4 Interface Effect on Ferroelectric HZO 6
2.5 Performance of 1TCFe and 2T1CFe structure 7
Chapter 3 Experiment Setup and Device Preparation of HZO FeRAM 17
3.1 Overall Equipment Setup 17
3.2 The Process Flow of HZO MFM Capacitance 17
3.3 The Polarization Characteristics 19
3.4 Energy-Dispersive X-ray Spectroscopy Analysis 20
Chapter 4 The Performance of 2T1CFe Unit Cell 30
4.1 Enhanced Memory Window of 2T1CFe Unit Cell 30
4.2 Pulse Transients Characteristics of 2T1CFe 31
4.2.1 The Comparison of Programming Speed 31
4.2.2 The Comparison of Erasing Speed 32
4.3 The Capability of Multi-level Operations 33
4.3.1 Gradual Tuning Operation of 2T1CFe with HfO2 33
4.3.2 Continual Tuning Capability of 2T1CFe with HfO2 33
4.4 Endurance Cycling Tests for 3-bits-per-cell 34
Chapter 5 2T1CFe Memory Cell with Highly Stable Operations 43
5.1 Device Uniformity of 2T1CFe 43
5.2 The Comparison of Disturbance Immunity for 2T1CFe and 1T1CFe 43
5.2.1 PGM Disturbance 44
5.2.2 ERS Disturbance 44
5.2.3 Read Disturbance 45
5.2.4 Disturbance Tests for 1T1CFe and 2T1CFe 45
5.3 High-Temperature-Accelerated Tests for Data Retention 46
5.4 Short Summary 47
Chapter 6 Summary and Conclusion 56
References 59
[1.1] E. R. Hsieh, M. Giordano, B. Hodson, A. Levy, S. Osekowsky, R. Radway, Y. Shih, W. Wan, T. Wu, and X. Zheng, “High-Density Multiple Bits-per-Bell 1T4R RRAM Array with Gradual SET/RESET and its Effectiveness for Deep Learning,” in IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2019, pp. 35.6.1-35.6.4.
[1.2] N. Xu, Y. Lu, W. Qi, Z. Jiang, X. Peng, F. Chen, J. Wang, W. Choi, S. Yu, and D. Kim, “STT-MRAM Design Technology Co-optimization for Hardware Neural Networks,” in IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2018, pp 15.3.1-15.3.4.
[1.3] Z. Fan, J. Chen, and J. Wang, “Ferroelectric HfO2-based Materials for Next-Generation Ferroelectric Memories,” Journal of Advanced Dielectrics, vol. 6, no. 2, pp. 1-11, 2016.
[1.4] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 2818-2826.
[1.5] Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao, C. Xue, W. Chen, J. Tang, Y. Wang, M. Chang, H. Qian, and H. Wu, “33.2 A Fully Integrated Analog ReRAM Based 78.4 TOPS/W Compute-in-Memory Chip with Fully Parallel MAC Computing,” in IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2020, pp. 500-501.
[1.6] M. Park, H. Kim, Y. Kim, W. Lee, T. Moon, K. Kim, and C. Hwang, “Study on the Degradation Mechanism of the Ferroelectric Properties of Thin Hf0. 5Zr0. 5O2 Films on TiN and Ir Electrodes,” Applied Physics Letters, vol. 105, no. 7, pp. 1-5, 2014.
[1.7] W. Chen, Y. Zhang, P. Chen, Y. Tseng, C. Wu, C. Yang, P. Wu, Y. Tan, S. Lin, W. Huang, H. Huang, T. Tsai, and T. Chang, “Investigation on the Current Conduction Mechanism of HfZrOx Ferroelectric Memory,” Journal of Physics D: Applied Physics, vol. 53, no. 44, pp. 1-10, 2020.
[1.8] M. Park, H. Kim, Y. Kim, T. Moon, and C. Hwang, “The Effects of Crystallographic Orientation and Strain of Thin Hf0.5Zr0.5O2 Film on its Ferroelectricity,” Applied Physics Letters, vol. 104, no. 7, pp. 1-6, 2014.
[1.9] V. Gaddam, D. Das, and S. Jeon, “Insertion of HfO2 Seed/Dielectric Layer to the Ferrpelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors,” IEEE Transactions on Electron Devices, vol. 67, no. 2, pp. 745-750, 2020.
[1.10] H. Li, P. Chang, G. Du, J. Kang, and X. Liu, “Impact of Interfacial Layer on the Switching Characteristics of HZO-based Ferroelectric Tunnel Junction,” in Symposium on VLSI Technology, Systems and Applications, Hsinchu, Taiwan, 2021, pp. 1-2.
[2.1] T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide Thin Films,” Applied Physics Letters, vol. 99, no. 10, pp1-3, 2011.
[2.2] M. Park, Y. Lee, H. Kim, Y. Kim, T. Moon, K. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. Hwang , “Ferroelectricity and Anti-ferroelectricity of Doped Thin HfO2‐based Films,” Advanced Materials, vol. 27, no.11, pp. 1811-1831, 2015.
[2.3] M. Park, Y. Lee, T. Mikolajick, U. Schroeder, and C. Hwang, “Review and Perspective on Ferroelectric HfO2-based Thin Films for Memory Applications,” MRS Communications, vol. 8, no. 3, pp. 795-808, 2018.
[2.4] E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A. Graham, T. Melde, U. Schröder, and T. Mikolajick, “Impact of Layer Thickness on the Ferroelectric Behavior of Silicon Doped Hafnium Oxide Thin Films,” Thin Solid Films, vol.533, no.30, pp. 88-92, 2013.
[2.5] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Mühle, K. Seidel, and J. Müller, “A Multilevel FeFET Memory Device Based on Laminated HSO and HZO Ferroelectric Layers for High-density Storage,” in IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2019.
[2.6] J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano letters, vol.12, no. 8, pp. 4318-4323, 2012.
[2.7] W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou, “Performance Improvement of Hf0.5Zr0.5O2-based Ferroelectric-field-effect Transistors with ZrO2 Seed Layers,” IEEE Electron Device Letters, vol.40, no. 5, pp. 714-717, 2019.
[2.8] V. Gaddam, D. Das, and S. Jeon, “Insertion of HfO2 Seed/dielectric Layer to the Ferroelectric HZO films for Heightened Remanent Polarization in MFM Capacitors,” IEEE Transactions on Electron Devices, vol. 67, no. 2, pp. 745-750, 2020.
[2.9] E. R. Hsieh, W. Tsai, Y. Lin, C. Liu, S. S. Chung, Y. Tang, and T. Chen, “The First Embedded 14nm FeFinFET NVM: 2T1CFE Array as Electrical Synapses and Activations for High-performance and Low-power Inference Accelerators,” in Symposium on VLSI Technology, Kyoto, Japan, 2021, pp. 1-2.
[3.1] J. Müller, T.S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, and A. Kersch, “Ferroelectric Hafnium Oxide: A CMOS-compatible and Highly Scalable Approach to Future Ferroelectric Memories,” in IEEE International Electron Devices Meeting, Washington, DC, USA ,2013, pp.10.8.1-10.8.4.
[3.2] Z. Krivokapic, U. Rana, R. Galatage, A. Razavieh, A. Aziz, J. Liu, and C. Serrao, “14nm Ferroelectric FinFET Technology with Steep Subthreshold Slope for Ultra Low Power Applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 15.1.1-15.1.4.
[3.3] F. Penen, J. Malherbe, M. P. Isaure, D. Dobritzsch, I. Bertalan, E. Gontier, and D. Schaumlöffel, “Chemical Bioimaging for the Subcellular Localization of Trace Elements by High Contrast TEM, TEM/X-EDS, and NanoSIMS,” Journal of Trace Elements in Medicine and Biology, vol. 37, pp. 62-68, 2016.
[4.1] X. Liu, Y. Wang, P. V. Lukashev, J. D. Burton, and E. Y. Tsymbal, "Interface Dipoole Effect on Thin Film Ferroelectric Stability: First-principles and Phenomenological Modeling," Physical Review B, vol. 85, no. 12, pp.1-4 , 2012.
[4.2] J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, and K. Kuehnel, “High-Endurance and Low-Voltage Operation of 1T1C FeRAM Arrays for Nonvolatile Memory Application,” in IEEE International Memory Workshop, Dresden, Germany, 2021.
[5.1] K. T. Chen, H. Chen, C. Liao, G. Siang, C. Lo, M. Liao, and M. Lee, “Non-volatile Ferroelectric FETs Using 5-nm Hf0.5Zr0.5O2 with High Data Retention and Read Endurance for 1T Memory Applications,” IEEE Electron Device Letters, vol. 40, no. 3, pp. 399-402, 2019.
[5.2] J. H. Bae, D. Kwon, N. Jeon, S. Cheema, A. Tan, C. Hu, and S. Salahuddin, Sayeef, “Highly Scaled, High Endurance, Ω-Gate, Nanowire Ferroelectric FET Memory Transistors,” IEEE Electron Device Letters, vol. 41, no.11, pp.1637-1640, 2020.
[5.3] T. Ali, K. Mertens, R. Olivo, M. Rudolph, S. Oehler, K. Kühnel, and R. Hoffmann, “A Novel Hybrid High-Speed and Low Power Antiferroelectric HSO Boosted Charge Trap Memory for High-Density Storage,” in IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2020, pp.18.3.1-18.3.4.
[5.4] C. Y. Liao, K. Hsiang, F. Hsieh, S. Chiang, S. Chang, J. Liu, and C. Chang, “Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2 for High-Density Nonvolatile Memory,” IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, 2021.
[5.5] K. Chatterjee, S. Kim, G. Karbasian, A. Tan, A. Yadav, A. Khan, C. Hu, and S. Salahuddin, “Self-aligned, Gate Last, FDSOI, Ferroelectric Gate Memory Device with 5.5-nm Hf0.8Zr0.2O2, High Endurance and Breakdown Recovery,” IEEE Electron Device Letters, vol. 38, no. 10, pp. 1379-1382, 2017.
[5.6] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. Smith, K. Tapily, and S. Datta, “Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance,” IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, 2018.
[5.7] A. J. Tan, Y. Liao, L. Wang, N. Shanker, J. Bae, C. Hu, and S. Salahuddin, “Ferroelectric HfO2 Memory Transistors with High-κ Interfacial Layer and Write Endurance Exceeding 1010 Cycles,” IEEE Electron Device Letters, vol. 42, no. 7, pp. 994-997, 2021.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 利用鰭式電晶體之變異性實現物理不可複製函數
2. 以40 nm CMOS技術實現通用安全函數功能晶片
3. 以16奈米鰭式場效電晶體實現接面熔絲崩潰型單次編程記憶體晶片之設計與製作
4. 以第一原理與量子傳輸理論來計算在汲源極與閘極電壓下之二硫化鉬/金屬側接觸
5. 高頻特性分析與模擬應用於28奈米多閘nMOSFETs 包含元件佈局效應
6. 完整的寄生RLC萃取方法與等效電路模型之建立應用於多閘指與多環狀元件中包括佈局與技術微縮效應之高頻特性與雜訊分析與模擬
7. 利用阻變式閘極鰭式場效電晶體陣列實現物理不可複製函數
8. 一種運用16奈米鰭式電晶體平台製作的一次性編程三態可定址記憶體加密平台
9. 以40奈米CMOS技術實現一次性編程物理不可複製函數應用於人工智慧物聯網之身分驗證
10. 應用氧化鋯鉿鐵電特性達低功耗負電容砷化鎵銦鰭式電晶體特性之研究
11. 單晶片整合數位MEMS溫度計與溫度補償之實時時鐘於1P6M ASIC CMOS MEMS 製程
12. 應用於奈米MOSFET之新式方法以準確萃取元件本質RF與AC效能參數以及等效電路模型用於高頻特性與雜訊模擬
13. 新式方法以萃取本質寄生RLC與小訊號等效電路模型應用於三端與四端奈米多閘指金氧半場效電晶體之高頻與雜訊模擬
14. 奈米CMOS元件模型與參數萃取方法應用於包含佈局與溫度效應之高頻模擬與射頻雜訊分析
15. 元件參數萃取與解析式模型以探討奈米CMOS元件佈局效應對於直流與高頻特性影響