|
[1.1] E. R. Hsieh, M. Giordano, B. Hodson, A. Levy, S. Osekowsky, R. Radway, Y. Shih, W. Wan, T. Wu, and X. Zheng, “High-Density Multiple Bits-per-Bell 1T4R RRAM Array with Gradual SET/RESET and its Effectiveness for Deep Learning,” in IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2019, pp. 35.6.1-35.6.4. [1.2] N. Xu, Y. Lu, W. Qi, Z. Jiang, X. Peng, F. Chen, J. Wang, W. Choi, S. Yu, and D. Kim, “STT-MRAM Design Technology Co-optimization for Hardware Neural Networks,” in IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2018, pp 15.3.1-15.3.4. [1.3] Z. Fan, J. Chen, and J. Wang, “Ferroelectric HfO2-based Materials for Next-Generation Ferroelectric Memories,” Journal of Advanced Dielectrics, vol. 6, no. 2, pp. 1-11, 2016. [1.4] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016, pp. 2818-2826. [1.5] Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao, C. Xue, W. Chen, J. Tang, Y. Wang, M. Chang, H. Qian, and H. Wu, “33.2 A Fully Integrated Analog ReRAM Based 78.4 TOPS/W Compute-in-Memory Chip with Fully Parallel MAC Computing,” in IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2020, pp. 500-501. [1.6] M. Park, H. Kim, Y. Kim, W. Lee, T. Moon, K. Kim, and C. Hwang, “Study on the Degradation Mechanism of the Ferroelectric Properties of Thin Hf0. 5Zr0. 5O2 Films on TiN and Ir Electrodes,” Applied Physics Letters, vol. 105, no. 7, pp. 1-5, 2014. [1.7] W. Chen, Y. Zhang, P. Chen, Y. Tseng, C. Wu, C. Yang, P. Wu, Y. Tan, S. Lin, W. Huang, H. Huang, T. Tsai, and T. Chang, “Investigation on the Current Conduction Mechanism of HfZrOx Ferroelectric Memory,” Journal of Physics D: Applied Physics, vol. 53, no. 44, pp. 1-10, 2020. [1.8] M. Park, H. Kim, Y. Kim, T. Moon, and C. Hwang, “The Effects of Crystallographic Orientation and Strain of Thin Hf0.5Zr0.5O2 Film on its Ferroelectricity,” Applied Physics Letters, vol. 104, no. 7, pp. 1-6, 2014. [1.9] V. Gaddam, D. Das, and S. Jeon, “Insertion of HfO2 Seed/Dielectric Layer to the Ferrpelectric HZO Films for Heightened Remanent Polarization in MFM Capacitors,” IEEE Transactions on Electron Devices, vol. 67, no. 2, pp. 745-750, 2020. [1.10] H. Li, P. Chang, G. Du, J. Kang, and X. Liu, “Impact of Interfacial Layer on the Switching Characteristics of HZO-based Ferroelectric Tunnel Junction,” in Symposium on VLSI Technology, Systems and Applications, Hsinchu, Taiwan, 2021, pp. 1-2. [2.1] T. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide Thin Films,” Applied Physics Letters, vol. 99, no. 10, pp1-3, 2011. [2.2] M. Park, Y. Lee, H. Kim, Y. Kim, T. Moon, K. Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. Hwang , “Ferroelectricity and Anti-ferroelectricity of Doped Thin HfO2‐based Films,” Advanced Materials, vol. 27, no.11, pp. 1811-1831, 2015. [2.3] M. Park, Y. Lee, T. Mikolajick, U. Schroeder, and C. Hwang, “Review and Perspective on Ferroelectric HfO2-based Thin Films for Memory Applications,” MRS Communications, vol. 8, no. 3, pp. 795-808, 2018. [2.4] E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A. Graham, T. Melde, U. Schröder, and T. Mikolajick, “Impact of Layer Thickness on the Ferroelectric Behavior of Silicon Doped Hafnium Oxide Thin Films,” Thin Solid Films, vol.533, no.30, pp. 88-92, 2013. [2.5] T. Ali, P. Polakowski, K. Kühnel, M. Czernohorsky, T. Kämpfe, M. Rudolph, B. Pätzold, D. Lehninger, F. Müller, R. Olivo, M. Lederer, R. Hoffmann, P. Steinke, K. Zimmermann, U. Mühle, K. Seidel, and J. Müller, “A Multilevel FeFET Memory Device Based on Laminated HSO and HZO Ferroelectric Layers for High-density Storage,” in IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2019. [2.6] J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano letters, vol.12, no. 8, pp. 4318-4323, 2012. [2.7] W. Xiao, C. Liu, Y. Peng, S. Zheng, Q. Feng, C. Zhang, J. Zhang, Y. Hao, M. Liao, and Y. Zhou, “Performance Improvement of Hf0.5Zr0.5O2-based Ferroelectric-field-effect Transistors with ZrO2 Seed Layers,” IEEE Electron Device Letters, vol.40, no. 5, pp. 714-717, 2019. [2.8] V. Gaddam, D. Das, and S. Jeon, “Insertion of HfO2 Seed/dielectric Layer to the Ferroelectric HZO films for Heightened Remanent Polarization in MFM Capacitors,” IEEE Transactions on Electron Devices, vol. 67, no. 2, pp. 745-750, 2020. [2.9] E. R. Hsieh, W. Tsai, Y. Lin, C. Liu, S. S. Chung, Y. Tang, and T. Chen, “The First Embedded 14nm FeFinFET NVM: 2T1CFE Array as Electrical Synapses and Activations for High-performance and Low-power Inference Accelerators,” in Symposium on VLSI Technology, Kyoto, Japan, 2021, pp. 1-2. [3.1] J. Müller, T.S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, and A. Kersch, “Ferroelectric Hafnium Oxide: A CMOS-compatible and Highly Scalable Approach to Future Ferroelectric Memories,” in IEEE International Electron Devices Meeting, Washington, DC, USA ,2013, pp.10.8.1-10.8.4. [3.2] Z. Krivokapic, U. Rana, R. Galatage, A. Razavieh, A. Aziz, J. Liu, and C. Serrao, “14nm Ferroelectric FinFET Technology with Steep Subthreshold Slope for Ultra Low Power Applications,” in IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2017, pp. 15.1.1-15.1.4. [3.3] F. Penen, J. Malherbe, M. P. Isaure, D. Dobritzsch, I. Bertalan, E. Gontier, and D. Schaumlöffel, “Chemical Bioimaging for the Subcellular Localization of Trace Elements by High Contrast TEM, TEM/X-EDS, and NanoSIMS,” Journal of Trace Elements in Medicine and Biology, vol. 37, pp. 62-68, 2016. [4.1] X. Liu, Y. Wang, P. V. Lukashev, J. D. Burton, and E. Y. Tsymbal, "Interface Dipoole Effect on Thin Film Ferroelectric Stability: First-principles and Phenomenological Modeling," Physical Review B, vol. 85, no. 12, pp.1-4 , 2012. [4.2] J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto, F. Sugaya, and K. Kuehnel, “High-Endurance and Low-Voltage Operation of 1T1C FeRAM Arrays for Nonvolatile Memory Application,” in IEEE International Memory Workshop, Dresden, Germany, 2021. [5.1] K. T. Chen, H. Chen, C. Liao, G. Siang, C. Lo, M. Liao, and M. Lee, “Non-volatile Ferroelectric FETs Using 5-nm Hf0.5Zr0.5O2 with High Data Retention and Read Endurance for 1T Memory Applications,” IEEE Electron Device Letters, vol. 40, no. 3, pp. 399-402, 2019. [5.2] J. H. Bae, D. Kwon, N. Jeon, S. Cheema, A. Tan, C. Hu, and S. Salahuddin, Sayeef, “Highly Scaled, High Endurance, Ω-Gate, Nanowire Ferroelectric FET Memory Transistors,” IEEE Electron Device Letters, vol. 41, no.11, pp.1637-1640, 2020. [5.3] T. Ali, K. Mertens, R. Olivo, M. Rudolph, S. Oehler, K. Kühnel, and R. Hoffmann, “A Novel Hybrid High-Speed and Low Power Antiferroelectric HSO Boosted Charge Trap Memory for High-Density Storage,” in IEEE International Electron Devices Meeting, San Francisco, CA, USA, 2020, pp.18.3.1-18.3.4. [5.4] C. Y. Liao, K. Hsiang, F. Hsieh, S. Chiang, S. Chang, J. Liu, and C. Chang, “Multibit Ferroelectric FET Based on Nonidentical Double HfZrO2 for High-Density Nonvolatile Memory,” IEEE Electron Device Letters, vol. 42, no. 4, pp. 617-620, 2021. [5.5] K. Chatterjee, S. Kim, G. Karbasian, A. Tan, A. Yadav, A. Khan, C. Hu, and S. Salahuddin, “Self-aligned, Gate Last, FDSOI, Ferroelectric Gate Memory Device with 5.5-nm Hf0.8Zr0.2O2, High Endurance and Breakdown Recovery,” IEEE Electron Device Letters, vol. 38, no. 10, pp. 1379-1382, 2017. [5.6] K. Ni, P. Sharma, J. Zhang, M. Jerry, J. Smith, K. Tapily, and S. Datta, “Critical Role of Interlayer in Hf0.5Zr0.5O2 Ferroelectric FET Nonvolatile Memory Performance,” IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, 2018. [5.7] A. J. Tan, Y. Liao, L. Wang, N. Shanker, J. Bae, C. Hu, and S. Salahuddin, “Ferroelectric HfO2 Memory Transistors with High-κ Interfacial Layer and Write Endurance Exceeding 1010 Cycles,” IEEE Electron Device Letters, vol. 42, no. 7, pp. 994-997, 2021.
|