跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉子齊
研究生(外文):Liu, Tzu-Chi
論文名稱:應用於神經調節技術之八通道單端雙相電流電壓雙模式高壓刺激器
論文名稱(外文):Dual-Mode Monopolar Biphasic 8-Channel Stimulator for Neuromodulation Realized in High-Voltage CMOS Process
指導教授:柯明道柯明道引用關係
指導教授(外文):Ker, Ming-Dou
口試委員:吳重雨邱進峯林群祐柯明道
口試委員(外文):Wu, Chung-YuChiu, Chin-FongLin, Chun-YuKer, Ming-Dou
口試日期:2022-02-17
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:70
中文關鍵詞:神經調節高壓電刺激器單端雙相刺激深腦刺激植入式生醫裝置
外文關鍵詞:neuromodulationhigh-voltage electrical stimulatormonopolar biphasic stimulationdeep brain stimulationimplantable biomedical devices
相關次數:
  • 被引用被引用:0
  • 點閱點閱:737
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:0
神經調節是一種將電訊號或藥劑直接送至目標區域的神經,以達到改變或調節神經活動的技術。近年來,使用功能性電刺激對神經進行刺激的神經調節療法已被廣泛應用在如帕金森氏症、癲癇、聽力喪失、失明、慢性疼痛等各種疾病或病症的治療中。而隨著積體電路以及生醫電子技術的進步,逐漸有能夠應用於各種疾病臨床治療的系統單晶片被開發出來,例如應用於癲癇或帕金森氏症治療的神經失調控制系統單晶片。
本篇論文提出了一個八通道單端雙相位定電流-定電壓雙模式電刺激器。為了能夠有更大的刺激強度,因此使用了0.18μm的高壓製程進行實現。本刺激器利用固定轉導偏壓電路(constant gm bias circuit)搭配數位-類比轉換器(DAC)來產生不同大小的參考電壓、電流,接著使用電流鏡(current mirror)以及運算放大器(operational amplifier)將其放大至所需的刺激脈衝強度,最後透過刺激驅動電路(stimulus driver)將刺激訊號送至指定的輸出通道。結合放電電路(discharge circuit)的功能,此刺激器能夠在符合安全規範的情況下對神經進行刺激。在定電流刺激模式中,此刺激器能產生±0.2mA~±10mA的大範圍輸出刺激電流,而在定電壓模式的輸出則可達±0.2V~±10V。因此本刺激器能夠根據不同的應用來使用適當的刺激強度。並且受益於高彈性的輸入控制訊號設計,刺激的各種參數如刺激頻率、脈衝寬度等,皆可以進行調整。
本刺激器已透過電性量測的方式在電極與人體組織介面的等效電路模型上進行驗證,若與適當的電荷幫浦電路搭配,本刺激器能夠順利進行高電壓以及負電壓的操作,並且不會產生過壓問題以及p-n 接面的順向導通問題,因此能夠與其他電路進行系統單晶片整合。
Neuromodulation is a technology that modulates nerve activity by delivering electrical pulse or pharmaceutical agents to the nerves directly. In recent years, neuromodulation therapy with functional electrical stimulation has been widely used to treat various diseases or symptoms such as Parkinson’s disease, epilepsy, hearing loss, profound hearing loss, blindness, chronic pain, etc. With the advancement of integrated circuit processes and bioelectronics technology, system-on-chip (SoC) devices that can be applied to the clinical treatment of various diseases have been developed, such as neurological disorders control SoC for treating epilepsy or Parkinson's disease.
In this thesis, an 8-channel monopolar biphasic stimulator with constant current and constant voltage dual-mode is proposed. The stimulator is fabricated in a 0.18μm high-voltage process for a higher stimulation intensity. In the stimulator, the constant gm bias circuit and the digital-to-analog converter (DAC) are combined to generate the reference voltage and current in different values. The reference voltage and current are amplified to the required output stimulus level by the current mirrors and the operational amplifiers. The stimulus signal is delivered to the selected output channel by the stimulus driver. With the discharge circuit, the stimulator can stimulate nerves without violating safety standards. A wide output range is designed for the stimulator that the output current can be adjusted from ±0.2mA to ±10mA, and the output voltage can be adjusted from ±0.2V to ±10V. Therefore, the appropriate intensity of stimulus pulse can be determined according to the applications. Besides, the stimulation parameters, such as frequency, pulse width, etc., can be modified with the flexible input control signal.
The proposed stimulator has been verified by measurement with an equivalent impedance model of electrode-tissue interface. Combining with a charge pump circuit, the stimulator can work without device overstress and p-n junction forward biasing problem under high voltage and negative voltage operation, and it can be integrated into a SoC device.
摘要 i
Abstract iii
Acknowledgment v
List of Tables viii
List of Figures ix
Chapter 1 Introduction................................1
1.1 Background and Motivation................................1
1.2 Introduction of Electrode-Tissue Models................................2
1.3 Patterns of Stimulation................................3
1.4 Introduction of DBS in Parkinson Disease................................5
1.5 Thesis Organization................................6
Chapter 2 Design of HV Dual-Mode Monopolar Biphasic Stimulator................................7
2.1 Prior Art of HV Dual-Mode Stimulator................................7
2.2 Specifications of HV Monopolar Biphasic Stimulator................................8
2.3 Structure of HV Monopolar Biphasic Stimulator................................9
2.3.1 Introduction of TSMC 0.18μm high-voltage CMOS process................................9
2.3.2 Dual-Mode Stimulator Architecture................................12
2.3.3 Constant-Gm Reference Circuit................................13
2.3.4 DAC for Current and Voltage Reference................................14
2.3.5 HV Level Shifter................................15
2.3.6 Current Mirror for Current Mode and Voltage Reference for Voltage Mode................................19
2.3.7 Stimulus Driver................................23
2.3.8 Operational Amplifier................................24
2.3.9 Stability Issue of Voltage Mode Stimulation................................26
2.3.10 Passive Discharge Circuit................................28
2.4 Simulation Result................................29
Chapter 3 Experimental Results................................33
3.1 Measurement Setup................................33
3.2 Measurement Results................................34
3.2.1 Current Mode Stimulation................................35
3.2.2 Voltage Mode Stimulation................................38
3.2.3 Discharge Circuit................................40
3.3 Discussion................................41
3.3.1 Current Mode Stimulation................................41
3.3.2 Voltage Mode Stimulation................................47
3.3.3 Instantaneous pulse................................49
3.4 Summary................................51
Chapter 4 Conclusions and Future Works................................53
4.1 Conclusion................................53
4.2 Future Works................................53
4.2.1 Modifications for Mismatch Problems................................53
4.2.2 Modifications for Instantaneous Pulse................................54
4.2.3 The Switchable Configuration between Monopolar and Bipolar Stimulation................................56
References................................58
Appendix: Design of LV Dual-Mode Monopolar Biphasic Stimulator in SoC................................60
A.1 Specification and Block Diagram................................61
A.2 Measurement Result................................62
A.3 Summary................................66
A.4 Future Works................................67
[1] C. O. Oluigbo and A. R. Rezai, “Addressing neurological disorders with neuromodulation,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 7, pp. 1907–1917, July 2011.
[2] G. Alon, “Functional electrical stimulation (FES): clinical successes and failures to date,” Journal of Novel Physiotherapy and Rehabilitation, vol. 2, pp. 080–086, 2018.
[3] C.-Y. Wu et al., “Design considerations and clinical applications of closed loop neural disorder control SoCs,” in Proc. IEEE Conference on Design Automation, 2017, pp. 295–298.
[4] W.-M. Chen, et al., “A fully-integrated 8-channel closed-loop neural-prosthetic CMOS SoC for real-time epileptic seizure control,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 232-247, Jan. 2014.
[5] K.-Y. Lin, M.-D. Ker, and C.-Y. Lin “A high-voltage-tolerant stimulator realized in the low-voltage CMOS process for cochlear implant,” in Proc. IEEE Int. Symp. Circuits Syst., 2014, pp. 237-240.
[6] Y.-K. Lo et al., “A fully-integrated high-compliance voltage SoC for epiretinal and neural prostheses,” IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 6, pp. 761-772, Dec. 2013.
[7] Q. Xu, J. Li, and H. Zhou, “A fully implantable stimulator with wireless power and data transmission for experimental use in epidural spinal cord stimulation,” in Proc. IEEE Eng. Med. Bio. Conf., pp. 7230-7233, 2011.
[8] D. R. Merrill, M. Bikson, and J. G. R. Jefferys, “Electrical stimulation of excitable tissue: Design of efficacious and safe protocols,” J. Neurosci. Methods, vol. 141, pp. 171–198, 2005.
[9] C.-C. Hsieh, “Design of multi-channel monopolar biphasic voltage stimulator for implantable biomedical applications,” Master’s thesis, Dept. of Elect. Eng., NCTU, Taiwan, 2018.
[10] X. F. Wei and W. M. Grill, “Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo,” J. Neural Eng., vol. 6, no. 4, Aug. 2009.
[11] J. Gomez-Tames, T. Kutsuna, M. Tamura, Y. Muragaki, and A. Hirata, “Intraoperative direct subcortical stimulation: Comparison of monopolar and bipolar stimulation,” Phys. Med. Biol., vol. 63, no. 22, p. 225013, Nov. 2018.
[12] E. B. Montgomery Jr., “Deep brain stimulation reduces symptoms of Parkinson disease,” Cleveland Clin. J. Med., vol. 66, pp. 9–11, Jan. 1999.
[13] P. Ashby, G. Paradiso, J. A. SaintCyr, R. Chen, A. E. Lang, and A. M. Lozano, “Potentials recorded at the scalp by stimulation near the human subthalamic nucleus,” Clin. Neurophys., vol. 112, no. 3, pp. 431–437, Mar. 2001.
[14] F. Alonso, “Models and simulations of the electric field in deep brain stimulation : comparison of lead designs, operating modes and tissue conductivity,” PhD dissertation, Linköping University Electronic Press, Linköping, 2018.
[15] S. Miocinovic, M. Parent, C. R. Butson, P. J. Hahn, G. S. Russo, J. L. Vitek, and C. C. McIntyre, “Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation,” J. Neurophysiol., vol. 96, pp. 1569–1580, 2006.
[16] Y.-J. Hsiao, “Design of Dual-Mode Monopolar Biphasic Implantable Stimulator for Parkinson Disease Application,” Master’s thesis, Dept. of Elect. Eng., NYCU, Taiwan, 2021.
[17] P. G. A. Jespers and B. Murmann, “Practical circuit examples I,” in Systematic Design of Analog CMOS Circuits: Using Pre-Computed Lookup Tables, Cambridge: Cambridge University Press, 2017, pp. 114–164.
[18] B.G. Song, O.J. Kwon, I.K. Chang, H.J. Song, and K.D. Kwack, “A 1.8 v self-biased complementary folded cascode amplifier,” in Proc. IEEE Asia-Pacific Conference on ASIC, pp. 63-65, 1999.
[19] P. G. Drennan, M. L. Kniffin, and D. R. Locascio, “Implications of Proximity Effects for Analog Design,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 169-176, Sep. 2006.
[20] G. S. Jovanovic and M. K. Stojcev, “Current starved delay element with symmetric load,” International Journal of Electronics, vol. 93, no. 3, pp. 167–175, 2006.
[21] M. Haas, P. Vogelmann, and M. Ortmanns, “A neuromodulator frontend with reconfigurable class-b current and voltage controlled stimulator,” IEEE Solid-State Circuits Lett., vol. 1, no. 3, pp. 54–57, Mar. 2018.
[22] H. Chun, Y. Yang, and T. Lehmann, “Safety ensuring retinal prosthesis with precise charge balance and low power consumption,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 1, pp. 108–118, May 2013.
[23] J. E. Fleming, E. Dunn, and M. M. Lowery, “Simulation of closed-loop deep brain stimulation control schemes for suppression of pathological beta oscillations in Parkinson’s disease,” Front. Neurosci., vol. 14, p. 166, Mar. 2020.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top