跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 00:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周千又
研究生(外文):Chou, Chien-Yu
論文名稱:28-GHz 連續時間線性等化器與56-GS/s 取樣電路
論文名稱(外文):28-GHz Continuous-Time Linear Equalizer and 56-GS/s Sample-and-Hold Circuit
指導教授:吳介琮
指導教授(外文):Wu, Jieh-Tsorng
口試委員:郭建男陳巍仁吳介琮
口試委員(外文):Kuo, Chien-NanChen, Wei-ZenWu, Jieh-Tsorng
口試日期:2022-07-27
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:53
中文關鍵詞:線性等化器高速取樣電路
外文關鍵詞:Linear EqualizerHigh Speed Sample-and-Hold
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文應用於序列通訊系統中的類比前端接收機,此接收機的傳輸速率為112GBit/sec,採用四階脈衝振幅調變(4-level Pulse-Amplitude Modulation,PAM4)進行傳輸,因此每個符元(Symbol)上編碼2個位元。由於訊號對頻寬的要求較高,通道的損失較大,因此利用連續時間線性等化器(Continuous-Time Linear Equalizer, CTLE)先將訊號進行頻率補償,再交由取樣電路(Sample-and-Hold, SAH)交錯輸出。之後使用後端的類比數位轉換器(Analog-to-Digital Converter, ADC),將類比訊號轉換成數位訊號交給後續的數位電路處理,完成序列通訊系統的接收機類比電路(Analog Receiver)。
CTLE的架構主要由轉導放大器(Transconductance Amplifier, Gm)與轉阻放大器(Transimpedance Amplifier, TIA)組成。為了配合不同通道進行資料傳輸,因此在CTLE中,透過數位電路控制開關調整CTLE中電阻與電容值來調變增益補償量。SAH的架構採用自抬式開關(Bootstrapped Switch)的架構,可以擁有較佳的線性度,並利用多種補償方式得到更高的線性度。另外避免電路不匹配及製程偏移而造成類比前端輸出的共模電壓不相容ADC輸入共模電壓,因此加入共模回授電路(Common-Mode Feedback, CMFB),利用負回授減少電路的不理想效應。
此設計採用台積電 28nm CMOS製程設計,使用的供給電壓為1.5V與1.2V,輸入訊號最大擺幅為+-400mV,輸入訊號最大頻寬為28GHz。在CTLE中,直流增益固定在4.5dB,28GHz的最大增益為19.5dB。我們定義峰值差(Peak Difference)為在28GHz時的增益扣除直流增益,並以1dB為單位調整達到9dB至15dB的峰值差。當中低頻補償在2dB,以100MHz為單位調整範圍從350MHz到1.05GHz。而SAH的信納比(Signal-to-(Noise+Distortion)-Ratio, SNDR)達到40dB以上。總消耗功率為185mW。
This thesis is applied to analog front-end receiver in serial-link communication system. The data rate is 112GBit/sec and the data is encoded with 4-level pulse-amplitude modulation (PAM-4), so each transmitting symbol contains 2 bits of information. Due to the higher requirements on the bandwidth and higher channel loss, the signal is compensated first by continuous-time linear equalizer (CTLE), then sent to sample-and-hold (SAH) to interleave the signal. After that, we use analog-to-digital converter (ADC) at back-end to convert analog signal to digital signal for digital circuit and complete analog receiver of the serial-link communication system.
The CTLE structure consists of transconductance amplifier (Gm) and transimpedance amplifier (TIA). In order to match different channels, resistors and capacitors of CTLE can be adjusted by the digital controller to change the compensation gain. The SAH structure adopts bootstrapped switch which has better linearity and obtains higher linearity by using many compensation methods. Moreover, to avoid output common-mode voltage of analog front-end is incompatible with the ADC input common-mode voltage which is caused by circuit mismatch and process offset, using common-mode feedback (CMFB) with negative feedback to reduce the impact of non-ideal circuit.
This design uses TSMC 28nm CMOS process and supply voltage are 1.5V and 1.2V. The maximum input swing is +-400mV and the maximum bandwidth of input signal is 28GHz. In the CTLE, DC gain is fixed 4.5dB and the maximum gain at 28GHz is 19.5dB. We define the peak difference as the gain at 28GHz minus the DC gain, and the tuning range is from 9dB to 15dB for each 1dB step. When the mid-frequency compensation is 2dB, the compensation can be adjusted in 100MH units to reach 350MHz to 1.05GHz. The SAH achieves 40dB signal-to-noise-plus-distortion ratio (SNDR). Total power consumption is 185mW.
摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
一、 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 論文組織 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
二、 接收器鏈 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 接收器鏈介面 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 接收器鏈類比前端架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 接收器鏈等化器功能 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
三、 連續時間線性等化器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1 架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 源極退化 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 高頻補償級 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 中低頻補償級 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 轉阻放大器 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 共模回授電路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 等化器輸出級 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
四、 取樣電路 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 傳統自抬式開關 (Conventional Bootstrapped Switch) . . . . . . . . . . . . . 27
4.3 雙路徑高速自抬式開關電路 (Dual-Path High-Speed Bootstrapped Switch) . . 29
4.4 取樣電路輸出級 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
五、 佈局與模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1 佈局 (Layout) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 模擬結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2.1 頻率響應 (Frequency Response) . . . . . . . . . . . . . . . . . . . . . 38
5.2.2 回授穩定度 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2.3 快速傅立葉轉換 (Fast Fourier Transform, FFT) . . . . . . . . . . . . 43
5.2.4 大訊號模擬 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
六、 結論與未來展望 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
自傳 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
[1] H. Wu, M. Shimanouchi, and M. PengLi, “Effective Link Equalizations for Serial Links
at 112 Gbps and Beyond,” in 2018 IEEE 27th Conference on Electrical Performance of
Electronic Packaging and Systems (EPEPS), Oct 2018, pp. 25–27.
[2] K. Zheng, “System-driven Circuit Design for Adc-Based Wireline Data Links,” in Internet
resource, 2018.
[3] A. Cevrero, I. Ozkaya, P. A. Francese et al., “6.1 A 100Gb/s 1.1pJ/b PAM-4 RX with DualMode 1-Tap PAM-4 / 3-Tap NRZ Speculative DFE in 14nm CMOS FinFET,” in 2019 IEEE
International Solid- State Circuits Conference - (ISSCC), Feb 2019, pp. 112–114.
[4] Y. Frans, J. Shin, L. Zhou et al., “A 56-Gb/s PAM4 Wireline Transceiver Using a 32-Way
Time-Interleaved SAR ADC in 16-nm FinFET,” IEEE Journal of Solid-State Circuits,
vol. 52, no. 4, pp. 1101–1110, April 2017.
[5] S. Salhi, H. Escid, and A. Slimane, “Design of high speed transimpedance amplifier for
optical communication systems,” in 2017 Seminar on Detection Systems Architectures and
Technologies (DAT), Feb 2017, pp. 1–5.
[6] W. Yu, S. Sen, and B. Leung, “Distortion Analysis of MOS Track-and-Hold Sampling
Mixers Using Time-Varying Volterra Series,” IEEE Transactions on Circuits and Systems
II: Analog and Digital Signal Processing, vol. 46, no. 2, pp. 101–113, Feb 1999.
[7] M. Dessouky and A. Kaiser, “Very Low-Voltage Digital-Audio ∆Σ Modulator with 88-dB
Dynamic Range Using Local Switch Bootstrapping,” IEEE Journal of Solid-State Circuits,
vol. 36, no. 3, pp. 349–355, March 2001.
[8] Y. Krupnik, Y. Perelman, I. Levin et al., “112-Gb/s PAM4 ADC-Based SERDES Receiver
With Resonant AFE for Long-Reach Channels,” IEEE Journal of Solid-State Circuits,
vol. 55, no. 4, pp. 1077–1085, April 2020.
[9] H. Zhuang, Q. Cao, X. Peng et al., “A Bootstrapped Switch with Accelerated Rising Speed
and Reduced On-Resistance,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), May 2021, pp. 1–5.
[10] E. Swindlehurst, H. Jensen, A. Petrie et al., “An 8-bit 10-GHz 21-mW Time-Interleaved
SAR ADC With Grouped DAC Capacitors and Dual-Path Bootstrapped Switch,” IEEE
Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2347–2359, Aug 2021.
[11] K. Ohhata, K. Yayama, Y. Shimizu et al., “A 1GHz, 56.3dB SFDR CMOS track-and-hold
circuit with body-bias control circuit,” Ieice Electronic Express, vol. 4, pp. 701–706, 11
2007.
[12] K. Ohhata, Y. Shimizu, and K. Yamashita, “Feedthrough Reduction Technique for Trackand-Hold Circuit with Body-Bias Control Circuit,” IEICE Electronics Express, vol. 5,
no. 13, pp. 478–482, 2008.
[13] Y. Liang, X. Li, S. George et al., “Influence of Body Effect on Sample-and-Hold Circuit Design Using Negative Capacitance FET,” IEEE Transactions on Electron Devices,
vol. 65, no. 9, pp. 3909–3914, Sep. 2018.
[14] T. Ali, R. Yousry, H. Park et al., “6.4 A 180mW 56Gb/s DSP-Based Transceiver for High
Density IOs in Data Center Switches in 7nm FinFET Technology,” in 2019 IEEE International Solid- State Circuits Conference - (ISSCC), Feb 2019, pp. 118–120.
[15] B. Ye, K. Sheng, W. Gai et al., “A 2.29pJ/b 112Gb/s Wireline Transceiver with RX 4-Tap
FFE for Medium-Reach Applications in 28nm CMOS,” in 2022 IEEE International SolidState Circuits Conference (ISSCC), vol. 65, Feb 2022, pp. 118–120.
[16] K. Zheng, Y. Frans, S. L. Ambatipudi et al., “An Inverter-Based Analog Front End for a
56 GB/S PAM4 Wireline Transceiver in 16nm CMOS,” in 2018 IEEE Symposium on VLSI
Circuits, June 2018, pp. 269–270.
[17] M. Erett, D. Carey, J. Hudner et al., “A 126mW 56Gb/s NRZ wireline transceiver for
synchronous short-reach applications in 16nm FinFET,” in 2018 IEEE International Solid
- State Circuits Conference - (ISSCC), Feb 2018.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top