跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/19 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張鎮宇
研究生(外文):Chang, Chen-Yu
論文名稱:立方衛星之微型兆赫波時域光譜系統研發
論文名稱(外文):Development of THz time-domain spectroscopy system in CubeSat
指導教授:羅志偉羅志偉引用關係
指導教授(外文):Luo, Chih–Wei
口試委員:吳宗信鄭泗東方振洲吳光雄杜建明
口試委員(外文):Wu, Jong-ShinnCheng, StoneFong, Chen-JoeWu, Kaung-HsiungTu, Chien-Ming
口試日期:2021-11-03
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:67
中文關鍵詞:立方衛星兆赫波時域光譜系統雙節式混合燃料火箭
外文關鍵詞:CubeSatTHz time–domain spectroscopyTwo-stage propelled hybrid rocket
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
第1章 緒論 1
1.1 立方衛星介紹 1
1.2 兆赫波發展沿革 3
1.3 研究動機 4
第2章 火箭酬載系統 6
2.1 12 U立方衛星系統設計 6
2.2 兆赫波產生與偵測機制 7
2.2.1 兆赫波產生原理 7
2.2.2 兆赫波探測原理 13
2.3 光學延遲機制 15
第3章 兆赫波時域光譜系統 17
3.1 初版微型兆赫波時域光譜系統 17
3.2 光導天線 19
3.3 光導纖維(Optical fiber) 22
3.4 電力系統(Electrical power system, EPS) 25
第4章 整合及環境測試結果 29
4.1 電力系統整合測試(EPS integrated test) 30
4.2 真空測試 31
4.2.1 初版光纖雷射 32
4.2.2 光學延遲平台及其控制器 34
4.2.3 兆赫波天線 35
4.2.4 電力系統 36
4.2.5 結論 38
4.3 溫度循環測試 39
4.3.1 初版光纖雷射 40
4.3.2 光學延遲平台及其控制器 43
4.3.3 兆赫波天線 46
4.3.4 電力系統 47
4.3.5 結論 49
4.4 振動及衝擊測試 49
4.4.1 初版光纖雷射 50
第5章 總結與未來展望 55
參考文獻 56
附錄 60
[1] J. Puig-Suari, C. Turner and W. Ahlgren, “Development of the standard CubeSat deployer and a CubeSat class PicoSatellite”, 2001 IEEE Aerospace Conference Proceedings 1, 347–353 (2001).
[2] Sébastien Duijsens, “Preliminary study of a deployable CubeSat”, Université de Liège, Master thesis, 2017.
[3] Nanosatellite & CubeSat Database. Erik Kulu. 20 Aug. 2021. (https://www.nanosats.eu/)
[4] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Madanayake, S. Mandal, A. Alkhateeb, and G. C. Trichopoulos, “Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond”, IEEE Access 7, 78729–78757 (2019).
[5] W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation”, Rep. Prog. Phys. 70, 1325–1379 (2007).
[6] P. R. Smith, D. H. Auston, M. C. Nuss, “Subpicosecond photoconducting dipole antennas”, IEEE J. Quantum Electron. 24, 255–260 (1988).
[7] M. van Exter, D. R. Grischkowsky, “Characterization of an optoelectronic terahertz beam system”, IEEE Trans. Microwave Theory Tech. 38, 1684–1691 (1990).
[8] Q. Wu, X.-C. Zhang, “Free‐space electro‐optic sampling of terahertz beams”, Appl. Phys. Lett. 67, 3523–3525 (1995).
[9] Missions Database. eoPortal. European Space Agency. 21 Jan. 2017. (https://directory.eoportal.org/web/eoportal/satellite-missions/f/formosat-5)
[10] K. Cook, C. Fong, M. J. Wenkel, P. Wilczynski, N. Yen and G. S. Chang, “FORMOSAT-7/COSMIC-2 GNSS radio occultation constellation mission for global weather monitoring”, 2013 IEEE Aerospace Conference, pp. 1–8 (2013).
[11] Richard P. Welle, Siegfried Janson, Darren Rowen, Todd Rose, “CubeSat-scale laser communications”, 31st Space Symposium, Colorado Springs, United States of America, pp. 1–11 (2015).
[12] Daniel KL Oi, Alex Ling, Giuseppe Vallone, Paolo Villoresi, Steve Greenland, Emma Kerr, Malcolm Macdonald, Harald Weinfurter, Hans Kuiper, Edoardo Charbon and Rupert Ursin, “CubeSat quantum communications mission”, EPJ Quantum Technol. 4, 6 (2017).
[13] Zhongkan Tang, Rakhitha Chandrasekara, Yau Yong Sean, Cliff Cheng, Christoph Wildfeuer & Alexander Ling, “Near-space flight of a correlated photon system”, Sci. Rep. 4, 6366 (2014).
[14] Tonouchi, M., “Cutting-edge terahertz technology”, Nature Photon 1, 97–105 (2007).
[15] D. H. Auston, “Picosecond optoelectronic switching and gating in silicon”, Appl. Phys. Lett. 26, 3, 101–103¬ (1975).
[16] H. Dember, “Photoelectric E.M.F. in Cuprous-Oxide Crystals”, Phys. Z. 32, 554 (1931).
[17] M. Bass, P. A. Franken, J. F. Ward, and G. Weinreich, “Optical Rectification”, Phys. Rev. Lett. 9, 446 (1962).
[18] X. F. Ma, and X.-C. Zhang, “Determination of ratios between nonlinear-optical coefficients by using subpicosecond optical rectification”, J. Opt. Soc. Am. B 10, 1175–1179 (1993).
[19] Claude Rullière, Femtosecond Laser Pulses: Principles and Experiments (Springer, New York, 2004), Chap. 10, pp. 310–321.
[20] Yun-Shik Lee, Principles of Terahertz Science and Technology (Springer, Boston, 2009), Chap. 3, pp. 59–76.
[21] Peter H. Siegel, “Terahertz Pioneer: David H. Auston”, IEEE Transactions on Terahertz Science and Technology 1, 1, pp. 6–8 (2011).
[22] M. Martin, and E. R. Brown, “Critical Comparison of GaAs and InGaAs THz Photoconductors”, Terahertz Technology and Applications V, 826102 (2012).
[23] Nathan M. Burford, Magda O. El-Shenawee, “Review of terahertz photoconductive antenna technology”, Opt. Eng. 56, 010901 (2017).
[24] Kiyomi Sakai, Terahertz Optoelectronics (Springer-Verlag Berlin Heidelberg, Germany, 2005), Chap. 1, pp. 6–10.
[25] P. K. Benicewicz, J. P. Roberts, and A. J. Taylor, “Scaling of terahertz radiation from large-aperture biased photoconductors”, J. Opt. Soc. Am. B 11, 2533–2546 (1994).
[26] L. Duvillaret, F. Garet, J.-F. Roux, J.-L. Coutaz, “Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas”, IEEE J. Sel. Top. Quantum Electron.7, 615–623 (2001).
[27] X.‐C. Zhang and D. H. Auston, “Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics”, J. Appl. Phys. 71, 326–338 (1992).
[28] T. Dekorsy, H. Auer, C. Waschke, H. J. Bakker, H. G. Roskos, H. Kurz, V. Wagner, and P. Grosse, “Emission of Submillimeter Electromagnetic Waves by Coherent Phonons”, Phys. Rev. Lett. 74, 738–741 (1995).
[29] V. Apostolopoulos and M. E. Barnes, “THz emitters based on the photo-Dember effect”, J. Phys. D: Appl. Phys. 47, 374002 (2014).
[30] Kiyomi Sakai, Terahertz Optoelectronics (Springer-Verlag Berlin Heidelberg, Germany, 2005), Chap. 2, pp. 40–43.
[31] Kiyomi Sakai, Terahertz Optoelectronics (Springer-Verlag Berlin Heidelberg, Germany, 2005), Chap. 1, pp. 17–21.
[32] Kiyomi Sakai, Terahertz Optoelectronics (Springer-Verlag Berlin Heidelberg, Germany, 2005), Chap. 2, pp. 31–32.
[33] C. Winnewisser, P. Uhd Jepsen, M. Schall, V. Schyja, and H. Helm, “Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe”, Appl. Phys. Lett. 70, 3069–3071 (1997).
[34] Stetron. (https://www.stetron.com/loudspeakers-mylar-santoprene/)
[35] Kiyomi Sakai, Terahertz Optoelectronics (Springer-Verlag Berlin Heidelberg, Germany, 2005), Chap. 7, pp. 203–264.
[36] Charles Kittel, Introduction to Solid State Physics 8th edition (John Wiley & Sons, U.S.A., 2005), Chap. 8, pp. 187–218.
[37] Y. Takeda, A. Sasaki, Y. Imamura, and T. Takagi, “Electron mobility and energy gap of In0.53Ga0.47As on InP substrate”, J. of Appl. Physics 47, 5405–5407 (1976).
[38] Brittany L. Smith, Zachary S. Bittner, Staffan D. Hellstroem, George T. Nelson, Michael A. Slocum, Andrew G. Norman, David V. Forbes and Seth M. Hubbard, “InAlAs photovoltaic cell design for high device efficiency”, Prog. Photovolt: Res. Appl. 25, 706–713 (2017).
[39] Roman J. B. Dietz, Marina Gerhard, Dennis Stanze, Martin Koch, Bernd Sartorius, and Martin Schell, “THz generation at 1.55 μm excitation: six-fold increase in THz conversion efficiency by separated photoconductive and trapping regions”, Opt. Express 19, 25911–25917 (2011).
[40] B. Sartorius, H. Roehle, H. Künzel, J. Böttcher, M. Schlak, D. Stanze, H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths”, Opt. Express 16, 9565–9570 (2008).
[41] H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, and B. Sartorius, “Next generation 1.5 µm terahertz antennas: mesa-structuring of InGaAs/InAlAs photoconductive layers”, Opt. Express 18, 2296-2301 (2010).
[42] Harry J. R. Dutton, Understanding Optical Communications 1st edition (Prentice Hall, U.S.A., 1998), Chap. 2, pp. 25–44.
[43] Fedor Mitschke, Fiber Optics Physics and Technology (Springer-Verlag Berlin Heidelberg, Germany, 2009), Chap. 2, pp. 17–22.
[44] Fedor Mitschke, Fiber Optics Physics and Technology (Springer-Verlag Berlin Heidelberg, Germany, 2009), Chap. 1, pp. 1–12.
[45] Joohyung Lee, Keunwoo Lee, Yoon-Soo Jang, Heesuk Jang, Seongheum Han, Sang-Hyun Lee, Kyung-In Kang, Chul-Woo Lim, Young-Jin Kim, and Seung-Woo Kim, “Testing of a femtosecond pulse laser in outer space”, Sci Rep 4, 5134 (2014).
電子全文 電子全文(網際網路公開日期:20261108)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top