跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃羿文
研究生(外文):Huang, Yi-Wen
論文名稱:應用於5G毫米波頻段之寬頻、低功耗 低雜訊放大器設計
論文名稱(外文):Design of Broadband, Low-Power and Low-Noise Amplifier for 5G mmWave Bands
指導教授:吳霖堃
指導教授(外文):Wu, Lin-Kun
口試委員:邱佳松黃國威
口試委員(外文):Chiu, Chia-SungHuang, Guo-Wei
口試日期:2022-08-10
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:54
中文關鍵詞:K/Ka-band低雜訊放大器電流再利用寬頻低功耗
外文關鍵詞:K/Ka-bandLNAcurrent-reusedwidebandlow power
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為追求高傳輸速度,第五代通訊系統部分頻率推至毫米波頻段,而為同時向下兼容上代產品,射頻前端模組(RF Front-End Module, RF FEM)設計愈加複雜導致元件數與功率消耗激增,為有效延長電池壽命、增長待機時間,本篇論文針對寬頻、低功耗之低雜訊放大器(Low Noise Amplifier, LNA)進行研究。
本篇論文於第二章描述低雜訊放大器的基本原理與設計方法,包括常見的寬頻與低功耗技術回顧。第三章介紹台灣半導體研究中心(TSRI)所提供之高頻量測環境介紹,做為第四章晶片佈局規劃的參考依據,並對高頻探針校正技術(TRL)進行模擬。
第四章使用TSMC提供的0.18 μm CMOS製程實現低雜訊放大器設計,利用電晶體寄生電容(Cgd、Cgs)製造兩路並聯的RLC共振來達到較寬的阻抗頻寬,並利用降低電晶體偏壓與電流再利用(Current-Reused)技術來達到降低功耗的目標。
The 5th generation communication system are pushed to the millimeter wave frequencies in pursuit of high transmission speed. In order to be compatible with the previous generation products, the design of RF Front-End Module (RF FEM) has become complex, resulting in a surge in component count and power consumption. To extend the battery life and standby time, this thesis focuses on the research of low-noise amplifier (LNA) with broadband and low power consumption.
Chapter 2 introduces the basic principles and design methods of LNAs, including a review of common broadband and low-power technologies. Chapter 3 introduces the high-frequency measurement environment provided by Taiwan Semiconductor Research Institute (TSRI), which serves as the reference for chip layout planning in Chapter 4, and simulates the high-frequency probe calibration technology(TRL).
Chapter 4 uses the TSMC 0.18-μm CMOS process to realize the low-noise amplifier. By using transistor parasitic capacitances (Cgd、Cgs) to create two RLC impedance branches, the wideband impedance matching can be achieved. To reduce power consumption, the current-reused technology and lower transistor voltage is adopted in the design.
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3
第二章 低雜訊放大器原理及設計 4
2.1 基本概念 4
2.1.1 雜訊源 5
2.1.2 雜訊指數 9
2.1.3 線性度 10
2.2 低雜訊放大器設計方法 12
2.2.1 設計流程 12
2.2.2 寬頻匹配技術 15
2.2.3 低功耗技術 18
第三章 量測系統介紹與佈局相關考量 21
3.1 高頻量測系統介紹 21
3.2 高頻量測系統的校正方法與流程 23
3.2.1 校正方法 23
3.2.2 水平校正 24
3.2.3 SOLT校正 25
3.2.4 TRL校正 27
3.3 佈局相關考量 29
3.3.1 PAD設計考量 29
3.3.2 被動元件佈局與特性考量 31
3.3.3 天線效應考量 33
第四章 晶片量測結果與討論 35
4.1 晶片實作一 35
4.1.1 電路架構 35
4.1.2 模擬與量測結果 38
4.1.3 結果討論與修正反模擬 40
4.2 晶片實作二 43
4.2.1 電路架構 43
4.2.2 模擬與量測結果 46
4.2.3 結果討論 49
第五章 結論 50
參考文獻 51
[1] IMT Vision – Framework and overall objectives of the future development of IMT for 2020 and beyond.[Online] Available: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf
[2] MediaTek's Radio Frequency Front End Solutions for 5G.[Online] Available: https://www.youtube.com/watch?v=DS3LvGf39As
[3] 高曜煌, 射頻技術在行動通訊的應用. 全華圖書, 2017.
[4] B. Razavi, RF Microelectronics. 2nd ed. Prentice Hall, 2011.
[5] B. Razavi, Analog CMOS Integrated Circuits. 2nd ed. McGraw Hill, 2017.
[6] 陳坤明, "電子元件的雜訊從何而來," 國家奈米元件實驗室奈米通訊, vol. 23, no. 4, pp. 33-34, 2016.
[7] A. Bevilacqua and A. M. Niknejad, "An Ultrawideband CMOS Low-Noise Amplifier for 3.1-10.6-GHz Wireless Receivers," IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, 2004.
[8] Y.-C. Hsiao, C. Meng, and M.-C. Li, "Analysis and Design of Broadband LC-Ladder FET LNAs Using Noise Match Network," IEEE Trans. Microw. Theory Techn., vol. 66, no. 2, pp. 987-1001, 2018.
[9] P. Qin and Q. Xue, "Compact Wideband LNA with Gain and Input Matching Bandwidth Extensions by Transformer," IEEE Microw. Wireless Compon. Lett., vol. 27, no. 7, pp. 657-659, 2017.
[10] Y. Yu et al., "A 21-to-41-GHz High-Gain Low Noise Amplifier with Triple-Coupled Technique for Multiband Wireless Applications," IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 68, no. 6, pp. 1857-1861, 2021.
[11] E. Zailer, L. Belostotski, and R. Plume, "Wideband LNA Noise Matching," IEEE Solid-State Circuits Lett., vol. 3, pp. 62-65, 2020.
[12] H.-K. Chen, Y.-S. Lin, and S.-S. Lu, "Analysis and Design of a 1.6–28-GHz Compact Wideband LNA in 90-nm CMOS Using a pi-Match Input Network," IEEE Trans. Microw. Theory Techn., vol. 58, no. 8, pp. 2092-2104, 2010.
[13] J.-H. Lee, C.-C. Chen, H.-Y. Yang, and Y.-S. Lin, "A 2.5-dB NF 3.1–10.6-GHz CMOS UWB LNA with Small Group-Delay-Variation," Proc. IEEE Radio Freq. Integr. Circuits Symp., pp. 501-504, 2008.
[14] M. Lokhandwala, L. Gao, and G. M. Rebeiz, "A High-Power 24–40-GHz Transmit–Receive Front End for Phased Arrays in 45-nm CMOS SOI," IEEE Trans. Microw. Theory Techn., vol. 68, no. 11, pp. 4775-4786, 2020.
[15] Y.-S. Lin et al., "Analysis and Design of a CMOS UWB LNA with Dual RLC Branch Wideband Input Matching Network," IEEE Trans. Microw. Theory Techn., vol. 58, no. 2, pp. 287-296, 2010.
[16] C.-T. Fu, C.-N. Kuo, and S. S. Taylor, "Low-Noise Amplifier Design with Dual Reactive Feedback for Broadband Simultaneous Noise and Impedance Matching," IEEE Trans. Microw. Theory Techn., vol. 58, no. 4, pp. 795-806, 2010.
[17] H.-W. Choi, S. Choi, and C.-Y. Kim, "A CMOS Band-Pass Low Noise Amplifier with Excellent Gain Flatness for mm-Wave 5G Communications," IEEE MTT-S Int. Microw. Symp. Dig., pp. 329-332, 2020.
[18] Y. Hu and T. Chi, "A 27–46-GHz Low-Noise Amplifier with Dual-Resonant Input Matching and a Transformer-Based Broadband Output Network," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 725-728, 2021.
[19] H.-J. Lee, D. S. Ha, and S. S. Choi, "A 3 to 5 GHz CMOS UWB LNA with Input Matching Using Miller Effect," IEEE ISSCC Dig. Tech. Papers, pp. 731-740, 2006.
[20] Y.-S. Lin, J.-H. Lee, S.-L. Huang, C.-H. Wang, C.-C. Wang, and S.-S. Lu, "Design and Analysis of a 21–29-GHz Ultra-Wideband Receiver Front-End in 0.18-um CMOS Technology," IEEE Trans. Microw. Theory Techn., vol. 60, no. 8, pp. 2590-2604, 2012.
[21] Y. Peng, A. Ruffino, and E. Charbon, "A Cryogenic Broadband Sub-1-dB NF CMOS Low Noise Amplifier for Quantum Applications," IEEE J. Solid-State Circuits, vol. 56, no. 7, pp. 2040-2053, 2021.
[22] Y.-T. Lo and J.-F. Kiang, "Design of Wideband LNAs Using Parallel-to-Series Resonant Matching Network Between Common-Gate and Common-Source Stages," IEEE Trans. Microw. Theory Techn., vol. 59, no. 9, pp. 2285-2294, 2011.
[23] H.-W. Choi, C.-Y. Kim, and S. Choi, "6.7–15.3 GHz, High-Performance Broadband Low-Noise Amplifier with Large Transistor and Two-Stage Broadband Noise Matching," IEEE Microw. Wireless Compon. Lett., vol. 31, no. 8, pp. 949-952, 2021.
[24] H. Chen, H. Zhu, L. Wu, Q. Xue, and W. Che, "A CMOS Low-Power Variable-Gain LNA Based on Triple Cascoded Common-Source Amplifiers and Forward-Body-Bias Technology," IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, 2021.
[25] O. El-Aassar and G. M. Rebeiz, "Design of Low-Power Sub-2.4 dB Mean NF 5G LNAs Using Forward Body Bias in 22 nm FDSOI," IEEE Trans. Microw. Theory Techn., vol. 68, no. 10, pp. 4445-4454, 2020.
[26] Y.-H. Lin, S.-C. Hsiao, J.-H. Tsai, and T.-W. Huang, "A 0.7-mW V-Band Transformer-Based Positive- Feedback Receiver Front-End in a 65-nm CMOS," IEEE Microw. Wireless Compon. Lett., vol. 30, no. 6, pp. 613-616, 2020.
[27] M. Parvizi, K. Allidina, and M. N. El-Gamal, "An Ultra-Low-Power Wideband Inductorless CMOS LNA with Tunable Active Shunt-Feedback," IEEE Trans. Microw. Theory Techn., vol. 64, no. 6, pp. 1843-1853, 2016.
[28] D. Wu, R. Huang, W. Wong, and Y. Wang, "A 0.4-V Low Noise Amplifier Using Forward Body Bias Technology for 5 GHz Application," IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 543-545, 2007.
[29] Y. Chen, Y.-H. Lin, C.-C. Chiong, and H. Wang, "A 0.38-V, Sub-mW 5-GHz Low Noise Amplifier with 43.6% Bandwidth for Next Generation Radio Astronomical Receivers in 90-nm CMOS," IEEE MTT-S Int. Microw. Symp. Dig., pp. 1491-1494, 2018.
[30] B.-Z. Lu, Y. Wang, Y.-C. Wu, C.-C. Chiong, and H. Wang, "A Submilliwatt K-Band Low-Noise Amplifier for Next Generation Radio Astronomical Receivers in 65-nm CMOS Process," IEEE Microw. Wireless Compon. Lett., vol. 30, no. 7, pp. 669-672, 2020.
[31] A. A. Alhamed and G. M. Rebeiz, "A 28–37 GHz Triple-Stage Transformer-Coupled SiGe LNA with 2.5 dB Minimum NF for Low Power Wideband Phased Array Receivers," Proc. IEEE BiCMOS Compound Semiconductor Integr. Circuits Technol. Symp., pp. 1-4, 2020.
[32] P.-Y. Chang, S.-H. Su, S. S. H. Hsu, W.-H. Cho, and J.-D. Jin, "An Ultra-Low-Power Transformer-Feedback 60 GHz Low-Noise Amplifier in 90 nm CMOS," IEEE Microw. Wireless Compon. Lett., vol. 22, no. 4, pp. 197-199, 2012.
[33] S. Kong, H. D. Lee, M.-S. Lee, and B. Park, "A V-Band Current-Reused LNA with a Double-Transformer-Coupling Technique," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 11, pp. 942-944, 2016.
[34] M.-H. Li, Y. Wang, and H. Wang, "A 50–67-GHz Ultralow-Power LNA Using Double-Transformer-Coupling Technique and Self-Resonant Matching in 90-nm CMOS," IEEE Microw. Wireless Compon. Lett., vol. 32, no. 1, pp. 68-71, 2022.
[35] R.-M. Weng, C.-Y. Liu, and P.-C. Lin, "A Low-Power Full-Band Low-Noise Amplifier for Ultra-Wideband Receivers," IEEE Trans. Microw. Theory Techn., vol. 58, no. 8, pp. 2077-2083, 2010.
[36] Y.-L. Wei, S. S. H. Hsu, and J.-D. Jin, "A Low-Power Low-Noise Amplifier for K-Band Applications," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116-118, 2009.
[37] J. Zhang, D. Zhao, and X. You, "A 20-GHz 1.9-mW LNA Using gm-Boost and Current-Reuse Techniques in 65-nm CMOS for Satellite Communications," IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2714-2723, 2020.
[38] Impedance Standard Substrate.[Online] Available: http://scanru.ru/wp-content/uploads/2018/02/iss_map_101-190.pdf
[39] L. Gao, E. Wagner, and G. M. Rebeiz, "Design of E- and W-Band Low-Noise Amplifiers in 22-nm CMOS FD-SOI," IEEE Trans. Microw. Theory Techn., vol. 68, no. 1, pp. 132-143, 2020.
[40] H.-C. Kuo and H.-R. Chuang, "A 60-GHz High-Gain, Low-Power, 3.7-dB Noise Figure Low-Noise Amplifier in 90-nm CMOS," Proc. Eur. Microw. Conf., pp. 1555-1558, 2013.
[41] H.-C. Yeh, C.-C. Chiong, S. Aloui, and H. Wang, "Analysis and Design of Millimeter-Wave Low-Voltage CMOS Cascode LNA with Magnetic Coupled Technique," IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 4066-4079, 2012.
[42] C.-C. Chen, H.-Y. Yang, and Y.-S. Lin, "A 21–27 GHz CMOS Wideband LNA with 9.3±1.3 dB Gain and 103.9±8.1 ps Group-Delay Using Standard 0.18 μm CMOS Technology," Proc. IEEE Radio Wireless Symp., pp. 586-589, 2009.
電子全文 電子全文(網際網路公開日期:20270830)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊