跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 16:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱佑倫
研究生(外文):Chu, Yo-Lun
論文名稱:彈性導電布料相對變形之微瓦級感測積體電路
論文名稱(外文):A Microwatt Sensor IC Design for Relative Strain Measurement of the Elastic Conductive Fabric
指導教授:蘇朝琴
指導教授(外文):Su, Chau-Chin
口試委員:周世傑張振豪張順志
口試委員(外文):Jou, Shyh-JyeChang, Chen-HaoChan, Soon-Jyh
口試日期:2021-09-07
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:65
中文關鍵詞:微瓦級感測積體電路穿戴式裝置相對阻抗量測斜率類比數位轉換器
外文關鍵詞:Microwatt Sensor ICWearable DeviceRelative Impedance MeasurementSlope ADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
  本論文提出一個可量測彈性導電布料相對形變的感測積體電路,可應用於智慧服飾的形變量分析。人在動作時,會使身體上的衣服、褲子造成形變,因此衣物上的導電布料的電阻、電容值會產生變化。藉由量測此變化,可以得知人體的動作、呼吸頻率及深度、或是心律等生命徵象。
  本系統為主從模式架構中的從裝置,藉由主裝置發送量測要求,接著從裝置進行量測並回傳資料供主處理器記錄及分析。本感測器對導電布料上的浮接電容進行充電,接著對導電布料的四個角落放電進行積分,四個角落所得到的電荷即是阻抗倒數的比值。隨後經由電壓時間轉換器(Voltage to Time Converter)及時間數位轉換器(Time to Digital Converter)輸出數位碼。
  本系統晶片藉由量測阻抗相對值的方式,使其能量測的範圍大於絕對值量測。電阻量測範圍為200 k至1000 kΩ,電容可接受大小為10 p至50 pF。感測器的系統時脈設計在100 kHz。本晶片以UMC CMOS 0.18 µm製程實作,佈局面積為1067×1056 µm2,消耗的電流為170.83 µA。
This thesis proposes a sensor IC for measuring the relative strain of elastic conductive textiles. When body gesture changes, the fabric that cause the body move part is deformed. It cause the resistance and capacitance of the textile changes as well. By measuring and Analyzing these variation, we obtain the data regarding the gesture change such as motion sequence, breath rate and depth, heartbeats, etc.
The proposed system is a slave circuit. After it receives a measuring request, it starts measuring the resistance changes and then returns the data to the master circuit. The sensor first charges floating capacitor on conductive fabric through the fabric’s 4 corners. Then make charge redistribute to 4 independent integrators. Then it make charges on integrator is proportional to the impedance in the 4 corners. After that, a voltage to time convertor and a time to digital convertor produce the digital output.
The system is designed for relative resistance measurement. Therefore, the range of measurement is larger than absolute measurement. The equivalent range of resistance under test is from 200 kΩ to 1000 kΩ. The acceptable range of capacitance is 10 pF to 50 pF. The system clock is 100kHz. The chip is designed in UMC CMOS 0.18 µm process. The layout area is 1056×1067 µm2 and the operating current is 170.83 µA.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
第一章、緒論 1
1.1 相關研究發展現況 1
1.2 導電布料電阻值 4
1.3 論文結構 6
第二章、電路設計 7
2.1 系統總覽 7
2.2 偏壓電流與參考電壓電路 11
2.2.1 偏壓電流電路 11
2.2.2 正、負溫度係數電壓 13
2.2.3 低電壓能隙參考電壓電路 16
2.3 電荷重新分配電路 19
2.3.1 電荷重新分配 20
2.3.2 二階運算放大器 21
2.3.3 類比開關 26
2.4 連續比較器 28
2.5 疊接電流鏡(Casecode Current Mirror) 29
第三章、晶片佈局與模擬結果 31
3.1 佈局結果 31
3.2 晶片規格表 34
3.3 低電壓能隙參考電壓電路 35
3.4 二級運算放大器 38
3.5 連續比較器 39
3.6 類比數位轉換器 43
3.6.1 靜態性能分析 43
3.6.2 動態性能分析 44
3.7 系統模擬 46
3.7.1 系統於TT製程角落模擬 46
3.7.2 系統於FF製程角落模擬 50
3.7.3 系統於SS製程角落模擬 53
3.7.4 系統於FNSP製程角落模擬 56
3.7.5 系統於SNFP製程角落模擬 59
3.8 量測考量 62
第四章、結論 63
參考文獻 64
[1] S. Ghate, L. Yu, K. Du, “Sensorized fabric glove as game controller for rehabilitation,” IEEE SENSORS, 2020.
[2] G. D’Addio, S. Evangelista, L. Donisi, “Development of a Prototype E-Textile Sock,” Annual International Conference of the IEEE Engineering in Medicine and Biology Society(EMBC), 2019.
[3] A. Yao, C. L. Yang, J. K. Seo, “EIT-Based Fabric Pressure Sensing,” Computational and Mathematical Methods in Medicine, February 2013.
[4] Vladan Koncar, Smart Textile and Their Applications, 1st Edition, Woodhead Publishing, April 2016.
[5] C. Hertleer, M. Grabowska, L. Van Langenhove, “Towards A Smart Suit,” Wearable Electronic and Smart Textiles, June 2004.
[6] Y. Chen, “An Electrical Textile Measurement Circuit Enhanced by Fully Differential Switched Capacitor Integrator,” Master Thesis, Institute of Electrical and Computer Engineering, National Chiao Tung University, 2019.
[7] S. Pyo, E. Jo, D. Kwon, W. Kim, W. Chang, J. Kim, “Fabrication of carbon nanotube-coated fabric for highly sensitive pressure sensor”, Solid-State Sensors, Actuators and Microsystems, Jun. 2017.
[8] H. Banba et al., “A CMOS bandgap reference circuit with sub-1-V operation”, IEEE J. Solid-State Circuits, May 1999
[9] SH. Peng, “A Microwatt Sensor IC for Elastic Conductive Fabric Strain Measurement,” Master Thesis, Institute of Electrical and Computer Engineering, National Chiao Tung University, 2020.

[10] K. Tay, “Transceiver Design of Communication in Conductive Fabric,” Master Thesis, Institute of Electrical and Computer Engineering, National Chiao Tung University,2020.
[11] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 3rd Edition, Oxford University Press, 2012.
[12] B. Razavi, Design of Analog CMOS Integrated Circuits, 2nd Edition, McGraw-Hill Education, 2016.
[13] A. Sedra, K. Smith, Microelectronic Circuits, International 6th Edition, Oxford University Press, 2011.
[14] R. Baker, CMOS Circuit Design, Layout, and Simulation, 3rd Edition, IEEE Press Series on Microelectronic Systems, 2010.
[15] N. Weste, D. Harris, Integrated Circuit Design, 4th Edition, Prentice Hall, 2010.
[16] T. Carusone, D. Johns, K. Martin, Analog Integrated Circuit Design, 2nd Edition, John Wiley & Sons Inc, 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top