|
[1] S.-Y. Lee et al., “A programmable implantable microstimulator SoC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker,” IEEE Trans. Biomed Circuits Syst., vol. 5, no. 6, pp. 511–522, 2011. [2] T. Kugelstadt, Getting the Most Out of your Instrumentation Amplifier Design. Dallas: Texas Instrum. Inc., 2005. [3] D. Han, Y. Zheng, R. Rajkumar, G. Dawe, and M. Je, “A 0.45 V 100-channel neural-recording IC with sub- W/channel consumption in 0.18 m CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 17–21, 2013, pp. 290–291. [4] Q. Fan, F. Sebastiano, H. Huijsing, and K. A. A. Makinwa, “A 1.8uW 60nV capacitively-coupled chopper instrumentation amplifier in 65 nm CMOS for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 46, pp. 1534–1543, Jul. 2011. [5] R. R. Harrison and C. Charles, “A low-power, low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–965, Jun. 2003. [6] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, pp. 584–1614, Nov. 1996. [7] E. M. Spinelli and M. A. Mayosky, “AC coupled three op-amp biopotential amplifier with active DC suppression,” IEEE Trans. Biomed. Eng., vol. 47, no. 12, pp. 1616–1619, Dec. 2000. [8] C. Enz, E. Vittoz, and F. Krummenacher, “A CMOS chopper amplifier,” IEEE J. Solid-State Circuits, vol. 22, no. 3, pp. 335–342, Mar. 1987. [9] Q. Fan, J. H. Huijsing, and K. Makinwa, “A 2.1 W area-efficient capacitively-coupled chopper instrumentation amplifier for ECG applications in 65 nm CMOS,” in Proc. ASSCC, 2010, pp. 337–340. [10] B. B. Winter and J. G. Webster, “Driven-right-leg circuit design,” IEEE Trans. Biomed. Eng., vol. BME-30, pp. 62–66, Jan. 1983. [11] E. M. Spinelli, N. H. Martinez, and M. A. Mayosky, “A transconductance driven-right-leg circuit,” IEEE Trans. Biomed. Eng., vol. 46, no. 12, pp. 1466–1470, Dec. 1999. [12] J. Uehlin et al., “A bidirectional brain computer interface with 64-channel recording, resonant stimulation and artifact suppression in standard 65nm CMOS ,” in Proc. European Solid-State Circuits Conf., 2019, pp. 77-80. [13] H. Chandrakumar and D. Markovic, “An 80-mVpp linear-input range, 1.6- G input impedance, low-power chopper amplifier for closed-loop neural recording that is tolerant to 650-mVpp common-mode interference,” IEEE J. Solid-State Circuits, vol. 52, no. 11, pp. 2811–2828, Nov. 2017. [14] Y. Tseng, Y. C. Ho, S. T. Kao, and C. C. Su, “A 0.09μW low power Front End biopotential amplifier for biosignal recording,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 5, pp. 508–516, Oct. 2012. [15] S. Ha et al., “Integrated circuits and electrode interfaces for noninvasive physiological monitoring,” IEEE Trans. Biomed. Eng., vol. 61, no. 5, pp. 1522–1537, May 2014 [16] T. Tang, W. Goh, L. Yao and Y. Gao, “A 16-channel TDM analog frontend with enhanced system CMRR for wearable dry EEG recording,” in Proc. IEEE Asian Solid-State Circuits Conference (A-SSCC), Nov. 2017, pp. 33-36. [17] O. Choksi and L. R. Carley, “Analysis of switched-capacitor common mode feedback circuit,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 50, pp. 906–917, Dec. 2003. [18] M. Banu, J. M. Khoury, and Y. Tsividis, “Fully differential operational amplifiers with accurate output balancing,” IEEE J. Solid-State Circuits, vol. SC-23, pp. 1410–1414, Dec. 1988. [19] T. Kwan and K. Martin, “An adaptive analog continuous-time CMOS biquadratic filter,” IEEE J. Solid-State Circuits, vol. SC-26, pp. 859–867, June 1991. [20] Yan Weixun, H. Zimmermann, "Continuous-Time Common-mode Feedback Circuit for Applications with Large Output Swing and High Output Impedance," Workshop on Design and Diagnostics of Electronic Circuit and Systems, IEEE- DDECS 2008, vol., no., pp.1-5, April 2008. [21] L. Luh, J. Choma, and J. Draper, “A continuous-time common-mode feedback circuit for high-impedance current-mode applications,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 363–369, Apr. 2000. [22] R. H. Olsson, III, D. L. Buhl, A. M. Sirota, G. Buzsaki, and K. D. Wise, “Band-tunable and multiplexed integrated circuits for simultaneous recording and stimulation with microelectrode arrays,” IEEE Trans. Biomed. Eng., vol. 52, pp. 1303–1310, Jul. 2005. [23] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010. [24] G. Y. Huang, S. J. Chang, C. C. Liu, and Y. Z. Lin, “10-bit 30- MS/s SAR ADC using a switchback switching method,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 3, pp. 584–588, Mar. 2013. [25] B. Razavi, “The bootstrapped switch [a circuit for all seasons],” IEEE Solid State Circuits Mag., vol. 7, no. 3, pp. 12–15, Sep. 2015. [26] B. Razavi, “The StrongARM latch [a circuit for all seasons],” IEEE Solid-State Circuits Mag., vol. 7, no. 2, pp. 12–17, Jun. 2015. [27] J. Xu, B. Busze, H. Kim, K. Makinwa, C. Van Hoof, and R. F. Yazicioglu, “A 60nV/Hz 15-channel digital active electrode system for portable biopotential signal acquisition,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2014, pp. 424–425. [28] M. Altaf, C. Zhang, and J. Yoo, “A 16-channel patient-specific seizure onset and termination detection SoC with impedance-adaptive transcranial electrical stimulator,” IEEE J. Solid-State Circuits, vol. 50, no. 11, pp. 2728–2740, Oct. 2015. [29] B. G. Do Valle, S. S. Cash, and C. G. Sodini, “Low-power, 8-channel EEG recorder and seizure detector ASIC for a subdermal implantable system,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 6, pp. 1058–1067, Apr. 2016. [30] J. Xu et al., “A 665 μW silicon photomultiplier-based NIRS/EEG/EIT monitoring asic for wearable functional brain imaging,” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 294–296, 2018. [31] Tu, C.C.; Lin, T.H. “Measurement and parameter characterization of pseudo-resistor based CCIA for biomedical applications,” IEEE International symposium on Bioelectronics and Bioinformatics, Taiwan, 11-14 April 2014; pp. 1-4. [32] L. Shen, N. Lu, and N. Sun, “A 1V 0.25µW inverter stacking amplifier with 1.07 noise efficiency factor,” IEEE J. Solid-State Circuits, vol. 53, no. 3, pp. 896–905, Mar. 2018. [33] T.-Y. Wang et al., “A fully reconfigurable low-noise biopotential sensing amplifier with 1.96 noise efficiency factor,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 3, pp. 411–422, Jun. 2014. [34] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, H. San, and N. Takai, “SAR ADC algorithm with redundancy,” in Proc. IEEE Asia Pacific Conf. Circuits and Syst. (APCCAS), 2008, pp. 268–271. [35] F. Kuttner, “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-m CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2002, pp. 176–177. [36] J. Fredenburg and M. Flynn, “A 90 MS/s 11 MHz bandwidth 62 dB SNDR noise-shaping SAR ADC,” in IEEE ISSCC Dig. Tech. Papers, 2012, pp. 468–469.
|