|
[1] W. Koch, R. Mancuso, R. West, and A. Bestavros, “Reinforcement learning for uav attitude control,” ACM Transactions on Cyber-Physical Systems, vol. 3, no. 2, pp. 1–21, 2019. [2] N. Passalis and A. Tefas, “Deep reinforcement learning for controlling frontal person closeup shooting,” Neurocomputing, vol. 335, pp. 37–47, 2019. [3] P. V. Klaine, J. P. Nadas, R. D. Souza, and M. A. Imran, “Distributed drone base station positioning for emergency cellular networks using reinforcement learning,” Cognitive computation, vol. 10, no. 5, pp. 790–804, 2018. [4] B. G. Maciel-Pearson, L. Marchegiani, S. Akcay, A. Atapour-Abarghouei, J. Garforth, and T. P. Breckon, “Online deep reinforcement learning for autonomous uav navigation and exploration of outdoor environments,” arXiv preprint arXiv:1912.05684, 2019. [5] K. Kersandt, G. Muñoz, and C. Barrado, “Self-training by reinforcement learning for fullautonomous drones of the future,” in 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC). IEEE, 2018, pp. 1–10. [6] C. Piciarelli and G. L. Foresti, “Drone patrolling with reinforcement learning,” in Proceedings of the 13th International Conference on Distributed Smart Cameras, 2019, pp. 1–6. [7] G. Muñoz, C. Barrado, E. Çetin, and E. Salami, “Deep reinforcement learning for drone delivery,” Drones, vol. 3, no. 3, p. 72, 2019. [8] C. Wu, B. Ju, Y. Wu, X. Lin, N. Xiong, G. Xu, H. Li, and X. Liang, “Uav autonomous target search based on deep reinforcement learning in complex disaster scene,” IEEE Access, vol. 7, pp. 117 227–117 245, 2019. [9] O. Bouhamed, H. Ghazzai, H. Besbes, and Y. Massoud, “Autonomous uav navigation: A ddpg-based deep reinforcement learning approach,” in 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5. [10] R. Conde, J. R. Llata, and C. Torre-Ferrero, “Time-varying formation controllers for unmanned aerial vehicles using deep reinforcement learning,” arXiv preprint arXiv: 1706.01384, 2017. [11] V. J. Hodge, R. Hawkins, and R. Alexander, “Deep reinforcement learning for drone navigation using sensor data,” Neural Computing and Applications, vol. 33, no. 6, pp. 2015– 2033, 2021. [12] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in actorcritic methods,” in International Conference on Machine Learning. PMLR, 2018, pp. 1587–1596. [13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015. [14] R. Bellman, Dynamic Programming. Dover Publications, 1957. [15] W. Zhao, H. Liu, and F. L. Lewis, “Robust formation control for cooperative underactuated quadrotors via reinforcement learning,” IEEE Transactions on Neural Networks and Learning Systems, pp. 1–11, 2020. [16] S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis, F. L. Lewis, and W. E. Dixon, “A novel actor–critic–identifier architecture for approximate optimal control of uncertain nonlinear systems,” Automatica, vol. 49, no. 1, pp. 82–92, 2013. [17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available: http://incompleteideas.net/book/the-book-2nd.html [18] R. Bellman, “A markovian decision process,” Journal of Mathematics and Mechanics, vol. 6, no. 5, pp. 679–684, 1957. [Online]. Available: http://www.jstor.org/stable/ 24900506 [19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013. [20] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018. [21] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding beyond pixels using a learned similarity metric,” in Proceedings of The 33rd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1558–1566. [Online]. Available: http://proceedings.mlr.press/v48/larsen16.html [22] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.
|