跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林建州
研究生(外文):Lin, Chien-Chou
論文名稱:基於臉部影像之rPPG血壓估測及不良脊柱姿態偵測系統
論文名稱(外文):A Facial Image­-based rPPG Blood Pressure Estimation and Postural Syndromes Prevention System
指導教授:吳炳飛吳炳飛引用關係
指導教授(外文):Wu, Bing­-Fei
口試委員:吳炳飛余國瑞蘇木春高立人
口試委員(外文):Wu, Bing­-FeiYu, Gwo-RueySu, Mu-ChunKau, Lih-Jen
口試日期:2021-08-28
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:79
中文關鍵詞:影像式生理資訊血壓估測遠距離光體積變化描記圖法脈波傳遞時間集合學習回歸樹姿態偵測駝背
外文關鍵詞:Facial ImageImage­-basedRPPGIPPGPulse Transit TimeHjorth ParameterBlood PressureRegression TreeEnsemble LearningPostural SyndromesPose Detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
一、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 血壓量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 坐姿估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 論文貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 章節說明. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
二、系統架構與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 血壓量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.1 人臉偵測與心跳訊號提取. . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 rPPG 訊號濾波與強化: . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 生理特徵提取. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.4 模型建立. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.5 串接式血壓估測架構. . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 坐姿估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 骨架偵測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 姿態特徵擷取. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.3 閥值選取. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
三、資料庫設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1 背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 血壓資料庫. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 血壓變化資料庫. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 血壓多元性族群資料庫. . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 IEEE 1708a2019
血壓量測設備驗證標準. . . . . . . . . . . . . . . 46
3.2.4 訓練與測試集劃分. . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 坐姿資料庫. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.1 UBFC 電腦使用情境資料庫. . . . . . . . . . . . . . . . . . . . . . 50
3.3.2 坐姿變化資料庫. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
四、評比細節. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1 比較方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.1 血壓估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 坐姿估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 評比準則. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.1 血壓估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.2 坐姿估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
五、實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1 血壓量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.1 模型演進版本比較. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.2 綜合測試評比. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.3 資料庫個別測試評比. . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.4 血壓多元性族群資料庫年齡測試評比. . . . . . . . . . . . . . . . . 64
5.2 坐姿估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 坐姿變化估測實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
六、結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1 結論探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.1 血壓估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2 坐姿估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 方法使用範圍. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 血壓估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 坐姿估測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 未來目標. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
[1] W. H. O. (WHO) et al., “Global health estimates 2020: Deaths by cause, age, sex, by country and by region, 20002019,” World Health Organization, 2020.
[2] G. F. Mitchell, “Arterial stiffness and hypertension,” Hypertension, vol. 64, no. 1, pp. 13–18, 2014.
[3] W. H. Organization, I. S. of Hypertension Writing Group et al., “2003 world health organization (who)/international society of hypertension (ish) statement on management of hypertension,” Journal of hypertension, vol. 21, no. 11, pp. 1983–1992, 2003.
[4] G. Jernstedt and J. P. Newcomer, “Blood pressure and pulse wave velocity measurement for operant conditioning of autonomic responding,” Behavior Research Methods & Instrumentation, vol. 6, no. 4, pp. 393–397, 1974.
[5] W. Chen, T. Kobayashi, S. Ichikawa, Y. Takeuchi, and T. Togawa, “Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration,” Medical and Biological Engineering and Computing, vol. 38, no. 5, pp. 569–574, 2000.
[6] H. Gesche, D. Grosskurth, G. Küchler, and A. Patzak, “Continuous blood pressure measurement by using the pulse transit time: comparison to a cuffbased method,” European journal of applied physiology, vol. 112, no. 1, pp. 309–315, 2012.
[7] "Ieee standard for wearable, cuffless blood pressure measuring devices amendment 1," IEEE Std 1708a2019 (Amendment to IEEE Std 17082014), pp. 1–35, 2019.
[8] F. Gerr, M. Marcus, C. Ensor, D. Kleinbaum, S. Cohen, A. Edwards, E. Gentry, D. J. Ortiz, and C. Monteilh, “A prospective study of computer users: I. Study design and incidence of musculoskeletal symptoms and disorders,” American journal of industrial medicine, vol. 41, no. 4, pp. 221–235, 2002.
[9] V. Johnston, T. Souvlis, N. L. Jimmieson, and G. Jull, “Associations between individual and workplace risk factors for selfreported neck pain and disability among female office workers,” Applied ergonomics, vol. 39, no. 2, pp. 171–182, 2008.
[10] B. Cagnie, L. Danneels, D. Van Tiggelen, V. De Loose, and D. Cambier, “Individual and work related risk factors for neck pain among office workers: a cross sectional study,”European Spine Journal, vol. 16, no. 5, pp. 679–686, 2007.
[11] S. Eltayeb, J. B. Staal, J. Kennes, P. H. Lamberts, and R. A. de Bie, “Prevalence of complaints of arm, neck and shoulder among computer office workers and psychometric evaluation of a risk factor questionnaire,” BMC musculoskeletal disorders, vol. 8, no. 1, pp. 1–11, 2007.
[12] C.Y. Cho, Y.S. Hwang, and R.J. Cherng, “Musculoskeletal symptoms and associated risk factors among office workers with high workload computer use,” Journal of Manipulative and Physiological therapeutics, vol. 35, no. 7, pp. 534–540, 2012.
[13] Z. Cao, T. Simon, S.E. Wei, and Y. Sheikh, “Realtime multiperson 2d pose estimation using part affinity fields,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 7291–7299.
[14] Z. Cao, G. Hidalgo, T. Simon, S.E. Wei, and Y. Sheikh, “Openpose: realtime multiperson 2d pose estimation using part affinity fields,” IEEE transactions on pattern analysis and machine intelligence, vol. 43, no. 1, pp. 172–186, 2019.
[15] S.E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose machines,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2016, pp. 4724–4732.
[16] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand keypoint detection in single images using multiview bootstrapping,” in Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, 2017, pp. 1145–1153.
[17] G. A. Roth, D. Abate, K. H. Abate, S. M. Abay, C. Abbafati, N. Abbasi, H. Abbastabar, F. AbdAllah, J. Abdela, A. Abdelalim et al., “Global, regional, and national age-sex specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017,” The Lancet, vol. 392, no.
10159, pp. 1736–1788, 2018.
[18] J. Petrie, E. O’brien, W. Littler, and M. De Swiet, “Recommendations on blood pressure measurement.” British medical journal (Clinical research ed.), vol. 293, no. 6547, p. 611, 1986.
[19] Y. Choi, Q. Zhang, and S. Ko, “Noninvasive cuffless blood pressure estimation using pulse transit time and hilbert–huang transform,” Computers & Electrical Engineering, vol. 39, no. 1, pp. 103–111, 2013.
[20] R. Mukkamala, J.O. Hahn, O. T. Inan, L. K. Mestha, C.S. Kim, H. Töreyin, and S. Kyal, "Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice," IEEE Transactions on Biomedical Engineering, vol. 62, no. 8, pp. 1879–1901, 2015.
[21] M. Guo, H. Ni, and A. Q. Chen, “Officebp: noninvasive continuous blood pressure monitoring based on ppt in office environment,” in Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers, 2020, pp. 29–32.
[22] M. Yoshioka and S. Bounyong, “Analysis of pulse transit time derived from imaging photoplethysmography and microwave sensorbased ballistocardiography,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020, pp. 286–287.
[23] X. Fan, Q. Ye, X. Yang, and S. D. Choudhury, “Robust blood pressure estimation using an rgb camera,” Journal of Ambient Intelligence and Humanized Computing, vol. 11, no. 11, pp. 4329–4336, 2020.
[24] Y.F. Fang, P.W. Huang, M.L. Chung, and B.F. Wu, “A feature selection method for visionbased blood pressure measurement,” in 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018, pp. 2158–2163.
[25] P.W. Huang, C.H. Lin, M.L. Chung, T.M. Lin, and B.F. Wu, “Image based contactless blood pressure assessment using pulse transit time,” in 2017 International Automatic Control Conference (CACS). IEEE, 2017, pp. 1–6.
[26] K. Nakano, T. Ohnishi, I. Nishidate, and H. Haneishi, “Noncontact sphygmomanometer based on pulsewave transit time between the face and hand,” in Optical Diagnostics and Sensing XVIII: Toward PointofCare Diagnostics, vol. 10501. International Society for Optics and Photonics, 2018, p. 1050110.
[27] L. McAtamney and E. N. Corlett, “Rula: a survey method for the investigation of workrelated upper limb disorders,” Applied ergonomics, vol. 24, no. 2, pp. 91–99, 1993.
[28] V. Johnston, G. Jull, R. Darnell, N. Jimmieson, and T. Souvlis, “Alterations in cervical muscle activity in functional and stressful tasks in female office workers with neck pain,” European journal of applied physiology, vol. 103, no. 3, pp. 253–264, 2008.
[29] Q. K. Dang, H. G. Seo, D. D. Pham, and Y. Chee, “Wearable sensor based stooped posture estimation in simulated parkinson’s disease gaits,” Sensors, vol. 19, no. 2, p. 223, 2019.
[30] H. Z. Tan, L. A. Slivovsky, and A. Pentland, “A sensing chair using pressure distribution sensors,” IEEE/ASME Transactions On Mechatronics, vol. 6, no. 3, pp. 261–268, 2001.
[31] J. Meyer, B. Arnrich, J. Schumm, and G. Troster, “Design and modeling of a textile pressure sensor for sitting posture classification,” IEEE Sensors Journal, vol. 10, no. 8, pp.
1391–1398, 2010.
[32] Y. Zhu, S. Qiu, M. Li, G. Chen, X. Hu, C. Liu, and X. Qu, “A smart portable mat that can meausre sitting plantar pressure distribution with a high resolution,” in 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA). IEEE, 2019, pp. 141–144.
[33] S. Bei, Z. Xing, L. Taocheng, and L. Qin, “Sitting posture detection using adaptively fused 3d features,” in 2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). IEEE, 2017, pp. 1073–1077.
[34] E. S. Ho, J. C. Chan, D. C. Chan, H. P. Shum, Y.m. Cheung, and P. C. Yuen, “Improving posture classification accuracy for depth sensorbased human activity monitoring in smart environments,” Computer Vision and Image Understanding, vol. 148, pp. 97–110, 2016.
[35] W. Min, H. Cui, Q. Han, and F. Zou, “A scene recognit. and semantic analysis approach to unhealthy sitting posture detection during screenreading,”Sensors, vol. 18, no. 9, p. 3119, 2018.
[36] O. Chernyavskaya, “fixposture,”https://github.com/monolesan/fixposture. git, 2020.
[37] B.F. Wu, C.C. Lin, and P.W. Huang, “Posex: A webcambased detection system to prevent postural syndromes for computer users,” in 2020 IEEEEMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2021, pp. 109–114.
[38] G. Baura, Medical device technologies: a systems based overview using engineering standards. Academic Press, 2011.
[39] Y. L. Shevchenko and J. E. Tsitlik, “90th anniversary of the development by nikolai s. korotkoff of the auscultatory method of measuring blood pressure,” vol. 94, no. 2, pp.
116–118, 1996.
[40] J. Enderle, Introduction to biomedical engineering. Academic press, 2012.
[41] M. Ramsey, Noninvasive automatic determination of mean arterial pressure. Springer, 1979.
[42] L. A. Geddes, Handbook of blood pressure measurement. Springer, 2013.
[43] G. Parati, R. Casadei, A. Groppelli, M. Di Rienzo, and G. Mancia, “Comparison of finger and intraarterial blood pressure monitoring at rest and during laboratory testing.” Hypertension, vol. 13, no. 6_pt_1, pp. 647–655, 1989.
[44] J. Fortin, W. Marte, R. Grüllenberger, A. Hacker, W. Habenbacher, A. Heller, C. Wagner, P. Wach, and F. Skrabal, “Continuous noninvasive blood pressure monitoring using concentrically interlocking control loops,” Computers in biology and medicine, vol. 36, no. 9, pp. 941–957, 2006.
[45] J. Gravenstein, D. A. Paulus, J. Feldman, and G. McLaughlin, “Tissue hypoxia distal to a penaz finger blood pressure cuff,” Journal of clinical monitoring, vol. 1, no. 2, pp. 120– 125, 1985.
[46] A. Moens, “Over de voortplantingssnelheid van den pols [on the speed of propagation of the pulse],” Ph.D. dissertation, PhD Thesis, Leiden, The Netherlands, 1877.
[47] A. Moens, “Die pulskurve [the pulse curve],” Leiden, The Netherlands, 1878.
[48] v. D. Korteweg, “Ueber die fortpflanzungsgeschwindigkeit des schalles in elastischen röhren,” Annalen der Physik, vol. 241, no. 12, pp. 525–542, 1878.
[49] V. Blazek, W. Rutten, and O. Such, “A method for spaceresolved, noncontacting and functional visualization of dermal perfusion,” patent, 1996.
[50] Y. Sun and N. Thakor, “Photoplethysmography revisited: from contact to noncontact, from point to imaging,” IEEE transactions on biomedical engineering, vol. 63, no. 3, pp. 463– 477, 2015.
[51] D. Shao, Y. Yang, C. Liu, F. Tsow, H. Yu, and N. Tao, “Noncontact monitoring breathing pattern, exhalation flow rate and pulse transit time,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 11, pp. 2760–2767, 2014.
[52] R. Takahashi, K. OgawaOchiai, and N. Tsumura, “Noncontact method of blood pressure estimation using only facial video,” Artificial Life and Robotics, vol. 25, no. 3, pp. 343– 350, 2020.
[53] Y. Zhou, H. Ni, Q. Zhang, and Q. Wu, “The noninvasive blood pressure measurement based on facial images processing,” IEEE Sensors Journal, vol. 19, no. 22, pp. 10 624–10 634, 2019.
[54] Y.Y. L. Wang, M.Y. Jan, G.C. Wang, J.G. Bau, and W.K. Wang, “Pressure pulse velocity is related to the longitudinal elastic properties of the artery,” Physiological Measurement, vol. 25, no. 6, p. 1397, 2004.
[55] M. Rong and K. Li, “A blood pressure prediction method based on imaging photoplethysmography in combination with machine learning,” Biomedical Signal Processing and Control, vol. 64, p. 102328, 2021.
[56] F. Schrumpf, P. Frenzel, C. Aust, G. Osterhoff, and M. Fuchs, “Assessment of deep learning based blood pressure prediction from ppg and rppg signals,” in Proceedings of the IEEE/ CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 3820–3830.
[57] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.
[58] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Advances in neural information processing systems, vol. 25, pp.
1097–1105, 2012.
[59] J. Deng, J. Guo, Y. Zhou, J. Yu, I. Kotsia, and S. Zafeiriou, “Retinaface: Singlestage dense face localisation in the wild,” arXiv preprint arXiv:1905.00641, 2019.
[60] W. Wang, A. C. den Brinker, S. Stuijk, and G. De Haan, “Algorithmic principles of remote ppg,” IEEE Transactions on Biomedical Engineering, vol. 64, no. 7, pp. 1479–1491, 2016.
[61] M. Koziej, J. Polak, J. Hołda, M. Trybus, M. Hołda, P. Kluza, A. Moskała, A. Chrapusta, J. Walocha, and K. Woźniak, “The arteries of the central forehead: implications for facial plastic surgery,” Aesthetic surgery journal, vol. 40, no. 10, pp. 1043–1050, 2020.
[62] H.J. Lee, S.Y. Won, J. O, K.S. Hu, S.Y. Mun, H.M. Yang, and H.J. Kim, “The facial artery: a comprehensive anatomical review,” Clinical Anatomy, vol. 31, no. 1, pp. 99–108, 2018.
[63] M. Koziej, M. Trybus, M. Hołda, J. Polak, J. Wnuk, P. Brzegowy, T. Popiela, J. Walocha, and A. Chrapusta, “Anatomical map of the facial artery for facial reconstruction and aesthetic procedures,” Aesthetic surgery journal, vol. 39, no. 11, pp. 1151–1162, 2019.
[64] S. Kwon, J. Kim, D. Lee, and K. Park, “Roi analysis for remote photoplethysmography on facial video,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015, pp. 4938–4941.
[65] D. E. King, “Dlibml: A machine learning toolkit,” The Journal of Machine Learning Research, vol. 10, pp. 1755–1758, 2009.
[66] W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light.” Optics express, vol. 16, no. 26, pp. 21 434–21 445, 2008.
[67] G. De Haan and V. Jeanne, “Robust pulse rate from chrominancebased rppg,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 10, pp. 2878–2886, 2013.
[68] A. for the Advancement of Medical Instrumentation et al., “American national standard for cardiac monitors, heart rate meters, and alarms (ec131983),”Arlington, VA, ANSI/AAMI, 1984.
[69] D. Hughes, C. F. Babbs, L. Geddes, and J. Bourland, “Measurements of young’s modulus of elasticity of the canine aorta with ultrasound,” Ultrasonic Imaging, vol. 1, no. 4, pp.
356–367, 1979.
[70] M. Simjanoska, M. Gjoreski, M. Gams, and A. Madevska Bogdanova, “Noninvasive blood pressure estimation from ecg using machine learning techniques,” Sensors, vol. 18,
no. 4, p. 1160, 2018.
[71] M. Simjanoska, S. Kochev, J. Tanevski, A. M. Bogdanova, G. Papa, and T. Eftimov, “Multilevel information fusion for learning a blood pressure predictive model using sensor data,” Information Fusion, vol. 58, pp. 24–39, 2020.
[72] J. C. McBride, X. Zhao, N. B. Munro, C. D. Smith, G. A. Jicha, L. Hively, L. S. Broster, F. A. Schmitt, R. J. Kryscio, and Y. Jiang, “Spectral and complexity analysis of scalp eeg characteristics for mild cognitive impairment and early alzheimer’s disease,” Computer methods and programs in biomedicine, vol. 114, no. 2, pp. 153–163, 2014.
[73] W. Jänig, “Autonomic nervous system,” in Human physiology. Springer, 1989, pp. 333– 370.
[74] B.F. Wu, Y.Y. Yang, B.R. Tsai, P.W. Huang, Y.C. Tsai, and K.H. Chen, “Remote heartrate measurement based on signal feature detection in time domain,” in 2019 International Conference on System Science and Engineering (ICSSE). IEEE, 2019, pp. 88–93.
[75] M. F. Lutfi and M. Y. Sukkar, “Effect of blood pressure on heart rate variability,” Khartoum Medical Journal, vol. 4, no. 1, 2012.
[76] H. Mussalo, E. Vanninen, R. Ikäheimo, T. Laitinen, M. Laakso, E. Länsimies, and J. Hartikainen, “Heart rate variability and its determinants in patients with severe or mild essential hypertension,” Clinical Physiology, vol. 21, no. 5, pp. 594–604, 2001.
[77] D. Liao, J. Cai, R. W. Barnes, H. A. Tyroler, P. Rautaharju, I. Holme, and G. Heiss, “Association of cardiac automatic function and the development of hypertension: The aric study,” American journal of hypertension, vol. 9, no. 12, pp. 1147–1156, 1996.
[78] P. Salvi, “Pulse waves,” How Vascular Hemodynamics Affects Blood Pressure, 2nd ed.; Springer Nature: Heidelberg, Germany, p. 217, 2017.
[79] P.W. Huang, B.J. Wu, and B.F. Wu, “A heart rate monitoring framework for realworld drivers using remote photoplethysmography,” IEEE journal of biomedical and health informatics, vol. 25, no. 5, pp. 1397–1408, 2020.
[80] D. Cochrane and G. H. Orcutt, “Application of least squares regression to relationships containing autocorrelated error terms,” Journal of the American statistical association, vol. 44, no. 245, pp. 32–61, 1949.
[81] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, V. Vapnik et al., “Support vector regression machines,” Advances in neural information processing systems, vol. 9, pp. 155–161, 1997.
[82] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and computing, vol. 14, no. 3, pp. 199–222, 2004.
[83] A. K. Jain, J. Mao, and K. M. Mohiuddin, “Artificial neural networks: A tutorial,” Computer, vol. 29, no. 3, pp. 31–44, 1996.
[84] Q.V. Tran, S.F. Su, Q.M. Tran, and V. Truong, “Intelligent noninvasive vital signs estimation from image analysis,” in 2020 International Conference on System Science and Engineering (ICSSE). IEEE, 2020, pp. 1–6.
[85] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees. Routledge, 2017.
[86] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp. 123–140, 1996.
[87] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.
[88] T. Hastie, “Tibshirani, r. and friedman, j.(2009): The elements of statistical learning. data mining, inference, and prediction,” 2008.
[89] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals of statistics, pp. 1189–1232, 2001.
[90] S. Bobbia, R. Macwan, Y. Benezeth, A. Mansouri, and J. Dubois, “Unsupervised skin tissue segmentation for remote photoplethysmography,” Pattern Recognition Letters, vol.
124, pp. 82–90, 2019.
[91] O. H. Schmitt, “A thermionic trigger,” Journal of Scientific instruments, vol. 15, no. 1, p. 24, 1938.
[92] N. Watanabe, Y. K. Bando, T. Kawachi, H. Yamakita, K. Futatsuyama, Y. Honda, H. Yasui, K. Nishimura, T. Kamihara, T. Okumura et al., “Development and validation of a novel cuffless blood pressure monitoring device,” Basic to Translational Science, vol. 2, no. 6, pp. 631–642, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊