跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:温永華
研究生(外文):Wen, Yong-Hwa
論文名稱:峰值效率94.3%且具有0.03mV/mA低串擾與185nA極低靜態電流的自適應切換CCM與DCM單電感多輸出升降壓轉換器
論文名稱(外文):A 94.3% Peak Efficiency Adaptive Switchable CCM and DCM Single-Inductor Multiple-Output Converter with 0.03mV/mA Low Crosstalk and 185nA Ultra-low Quiescent
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
口試委員:陳科宏王清松黃立仁
口試委員(外文):Chen, Ke-HorngWang, Cing-SongHuang, Li-Ren
口試日期:2021-10-26
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:48
中文關鍵詞:單電感多輸出升降壓轉換器交越變動率自適應CCM與DCM切換控制降低交越變動的誤差訊號放大器極低靜態電流
外文關鍵詞:Single-Inductor Multiple-Output (SIMO) ConverterCross regulationAdaptive Switchable CCM and DCM (ASCD)Crosstalk Reduction Error Amplifier (CREA)Ultra-low quiescent current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 i
ABSTRACT ii
誌 謝 iii
Contents iv
Figure Captions vi
Table Captions viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Single-Inductor Multiple-Output (SIMO) Converter 3
1.3 Cross Regulation in Multiple Output 6
1.4 Motivation 8
1.5 Thesis organization 9
Chapter 2 Prior Arts of Energy Distribution and Crosstalk Effect in SIMO Converter 10
2.1 Sequential Inductor Current Mode control 10
2.2 The Crosstalk Effect in Sequential Inductor Current Mode control 11
2.3 Stacking Inductor Current Mode control 12
2.4 The Crosstalk Effect in Stacking Inductor Current Mode control 13
2.4.1 Hybrid SIMO Converter 15
2.4.2 Fully Hysteretic SIMO 16
2.5 Design Goals 17
Chapter 3 Proposed Low Crosstalk SIMO DC-DC Buck-Boost Converter 18
3.1 Adaptive Switchable CCM and DCM (ASCD) control 18
3.2 Crosstalk Reduction Error Amplifier (CREA) 20
3.3 Ultra-low Power (ULP) Mode 22
Chapter 4 Circuit Implementations 23
4.1 ASCD control 23
4.1.1 Auto Mode Selector 24
4.1.2 Output Load Detector 26
4.2 CREA Technique with Feedback Rotator 28
4.2.1 Feedback Rotator 28
4.2.2 Crosstalk Reduction Error Amplifier (CREA) 29
4.2.3 Mechanism of CREA Technique 31
4.3 Ultra-low Power Technique 32
4.3.1 Ultra-low Power Bandgap 32
4.3.2 Ultra-low Power Comparator 34
Chapter 5 Experimental Results 36
5.1 Chip Micrograph 36
5.2 Measurement Condition Setup 37
5.3 Measurement Results of Steady State 37
5.4 Measured Control Mode Transition 39
5.5 Power Efficiency Analysis 41
5.6 Comparisons of State-of-the-art 42
Chapter 6 Conclusion and Future Work 44
6.1 Conclusion 44
6.2 Future Work 44
Reference 45
[1] A. Salimath et al., “An 86% Efficiency SIMO DC-DC Converter with One Boost, One Buck, and a Floating Output Voltage for Car-Radio,” ISSCC Dig. Tech. Papers, pp.426-427, Feb. 2018.
[2] X. Jing, P. K. T. Mok, and M. C. Lee, “A Wide-Load-Range Single-Inductor-Dual-Output Boost Regulator with Minimized Cross-Regulation by Constant-Charge-Auto-Hopping (CCAH) Control,” IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2350–2362, Oct. 2011.
[3] M. Yamada, N. B. Tran, T. Miyazaki, Y. Yoshihara and R. Fujimoto, “All-Digital Single-Inductor Multiple-Output DC-DC Converter with over 65.3% Efficiency in 1uW to 50mW Load Range and 86.3% peak efficiency,” IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 213-216, Nov. 2016.
[4] D. Ma, W. H. Ki, C. Y. Tsui, and P. K. T. Mok, “Single-Inductor Multiple-output Switching Converters with Time-Multiplexing Control in Discontinuous Conduction Mode,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89–100, Jan. 2003.
[5] J. Xu, Z. Weng, H. Jiang, C. Zhang, Z. Wang, and Q. Lin, “A High Efficiency Single-Inductor Dual-Output Buck Converter with Adaptive Freewheel Current and Hybrid Mode Control,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1614–1617, May 2016.
[6] Y. Yamauchi, Y. Yanagihara, H. Fuketa, T. Sakurai, and M. Takamiya, “Optimal Design to Maximize Efficiency of Single-Inductor Multiple-Output Buck Converters in Discontinuous Conduction Mode for IoT Applications,” International Conference on IC Design & Technology (ICICDT), pp. 1–4, Jun. 2015.
[7] Y-P. Su, et al., “CCM/GM Relative Skip Energy Control in Single inductor Multiple-output DC-DC Converter for Wearable Device Power Solution,” IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 65-68, Nov. 2014.
[8] M. H. H. K. H. Chen, “Single-Inductor Multi-Output (SIMO) DC-DC Converters With High Light-Load Efficiency and Minimized Cross-Regulation for Portable Devices,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1099–1111, Apr. 2009.
[9] M. Belloni et al., “A 4-Output Single-Inductor DC-DC Buck Converter with Self-Boosted Switch Drivers and 1.2A Total Output Current,” ISSCC Dig. Tech. Papers, pp. 444-445, Feb. 2008.
[10] Y. Liu, B. Li, Y. Zheng and Z. Wu, “An Effective PFM Control Strategy for Charge Control in SIMO DC-DC,” IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), pp. 1-3, June 2019.
[11] Hsin Chen, et al., “A Single-Inductor Dual-Output Converter With the Stacked MOSFET Driving Technique for Low Quiescent Current and Cross Regulation,” IEEE Transactions on Power Electronics, vol. 46, no. 10, pp. 2758–2770, March 2019.
[12] A. Pizzutelli and M. Ghioni, “Novel Control Technique For Single Inductor Multiple Output Converters Operating in CCM with Reduced Cross-Regulation,” 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, pp. 1502-1507, 2008.
[13] S. Wang, G. Cho and G. Cho, “A High-Stability Emulated Absolute Current Hysteretic Control Single-Inductor 5-Output Switching DC-DC Converter with Energy Sharing and Balancing,” ISSCC Dig. Tech. Papers, pp. 276-278, 2012.
[14] Sung-Wan Hong, “A 1.46mm^2 Simultaneous Energy-Transferring Single-Inductor Bipolar-Output Converter with a Flying Capacitor for Highly Efficient AMOLED Display in 0.5μm CMOS,” ISSCC Dig. Tech. Papers, pp. 200-201, Feb. 2020.
[15] H. P. Le et al., “A Single-Inductor Switching DC-DC Converter With Five Outputs and Ordered Power-Distributive Control,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2706–2714, Dec. 2007.
[16] C. S. Chae, H. P. Le, K. C. Lee, G. H. Cho, and G. H. Cho, “A Single-Inductor Step-Up DC-DC Switching Converter With Bipolar Outputs for Active Matrix OLED Mobile Display Panels,” ISSCC Dig. Tech. Papers, pp. 136–137, Feb. 2007.
[17] Y. J. Woo, H. P. Le, G. H. Cho, G. H. Cho, and S. I. Kim, “Load-Independent Control of Switching DC-DC Converters With Freewheeling Current Feedback,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2798–2808, Dec. 2008.
[18] C. Huang and P. K. T. Mok, “Cross-Regulation-Suppression Control Scheme for CCM Single-Inductor-Dual-Output Buck Converter with Ordered-Power Distributive Control,” IEEE International Symposium of Circuits and Systems (ISCAS), pp. 1612–1615, 2011.
[19] H. C. Kim, C. S. Yoon, D. K. Jeong, and J. Kim, “A Single-Inductor, Multiple-Channel Current-Balancing LED Driver for Display Backlight Applications,” IEEE Transactions on Industry Applications, vol. 50, no. 6, pp. 4077–4081, Nov./Dec. 2014.
[20] D. Lu, et al., “An 87%-Peak-Efficiency DVS-Capable Single-Inductor 4-Output DC-DC Buck Converter with Ripple-Based Adaptive Off-Time Control,” ISSCC Dig. Tech. Papers, pp. 82-83, Feb. 2014.
[21] Tae Young Goh, et al., “Single Discharge Control for Single-Inductor Multiple-Output DC–DC Buck Converters,” IEEE Transactions on Power Electronics, vol. 33, no.3, pp. 2037-2316, May 2018.
[22] C.-W. Kuan and H.-C. Lin, “Near-Independently Regulated 5-Output Single-Inductor DC-DC Buck Converter Delivering 1.2W/mm2 in 65nm CMOS,” ISSCC Dig. Tech. Papers, pp.274-275, Feb. 2012.
[23] W. L. Zeng et al., “A 470-nA Quiescent Current and 92.7%/94.7% Efficiency DCT/PWM Control Buck Converter With Seamless Mode Selection for IoT Application,” IEEE Trans. Circuits Syst. I: Regular paper, vol. 67, no. 11, pp. 4085–4098, Nov. 2020.
[24] M. Zhao et al., “An Ultra-Low Quiescent Current Tri-Mode DC-DC Buck Converter With 92.1% Peak Efficiency for IoT Applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, July 2021.
[25] W. Huang, L. Liu, X. Liao, C. Xu and Y. Li, “A 240-nA Quiescent Current, 95.8% Efficiency AOT-Controlled Buck Converter With A^2-Comparator and Sleep-Time Detector for IoT Application,” IEEE Transactions on Power Electronics, vol. 36, no. 11, pp. 12898-12909, Nov. 2021.
[26] S. Zhang, M. Zhao, X. Bai, Y. Yao and X. Wu, “A 6A, 2.5MHz Integrated Dual-Phase DC-DC Buck Converter with Low Quiescent Consumption for Mobile Devices,” IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, pp. 497-502, 2017.
[27] L. Han, X. Zhang, Y. Dai, Y. Lv, W. Sun and Y. Wang, “A Low Cost Low Quiescent dissipation DC-DC Converter for Wireless Sensor Networks,” 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 966-968, 2011.
[28] Y.-H. Lee, W.-C. Chen et al., “A Single-Inductor Dual-Output Converter with Switchable Digital-or-Analog Low-Dropout Regulator for Ripple Suppression and High Efficiency Operation,” IEEE Asian Solid State Circuits Conference (A-SSCC), pp. 225–228, Nov. 2012.
[29] M. Jung, et al., “An Error-Based Controlled Single-Inductor 10-Output DC-DC Buck Converter with High Efficiency at Light Load Using Adaptive Pulse Modulation,” ISSCC Dig. Tech. Papers, pp.222-223, Feb. 2015.
[30] W. Yang et al., “95% Light-load Efficiency Single-Inductor Dual-Output DC-DC Buck Converter with Synthesized Waveform Control Technique for USB Type-C,” IEEE Symposium on VLSI Circuits (VLSI-Circuits), pp. 1-2, June 2016.
[31] Yuji Osaki, et al., “1.2-V Supply, 100-nW, 1.09-V Bandgap and 0.7-V Supply, 52.5-nW, 0.55-V Subbandgap Reference Circuits for Nanowatt CMOS LSIs,” IEEE J. Solid-State Circuits, vol. 48, no. 6, pp. 1530–1538, Jan. 2013.
電子全文 電子全文(網際網路公開日期:20261028)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. -10至-20V具有閾值電壓追蹤技術的反向升降壓驅動氮化鎵驅動器達到小於1µA漏電流並應用於20MHz空乏型氮化鎵金屬-絕緣體-半導體高電子遷移率電晶體
2. 具快速暫態響應之平均電流模式降壓型直流直流電源轉換器
3. 應用於射頻獵能系統且具有改進負載瞬態響應的雙模式無縫切換低壓降線性穩壓器
4. 具有基於氮化鎵之二極體等效技術的積體化氮化鎵驅動器及氮化鎵功率開關實現50MHz操作頻率及小於0.2ns的死區時間控制
5. 利用數位自動歸零方法達成誤差小於1%之雙向電流感測應用於20A之高功率降壓轉換器
6. 應用於車載48V至1V 降壓轉換器使用高電壓存儲低電壓升壓自舉技術及早期比較導通時間產生器可達到準確的納秒脈衝及92.8%的高效率
7. 應用於高功率降壓轉換器的高精度電流檢測技術之自校準重建電路
8. 應用於150MHz頻寬5G NR射頻可提供89.7%效率以及減少37%線性放大器電流並由小電容輔助的能源回收封包追蹤電源調製器
9. 卷積神經網路基於元學習引擎設計應用於閉迴路帕金森病症偵測
10. 具復位機制用於改善負載調節恆定導通時間降壓轉換器
11. 使用單一電感雙輸出降壓轉換器於高頻元件上之電源管理
12. 具快速喚醒機制超低靜態電流之雙限遲滯控制降壓轉換器IC設計
13. 以可自我調變式的補償電容及補償電阻來實現可自我調變相位裕度達到快速暫態響應之電流模式直流直流降壓轉換器
14. 應用於寬輸入低輸出之適應式固定導通時間控制直流對直流降壓轉換器
15. 應用於300公尺遠距離物體偵測可提供200瓦高功率光達系統並具有保護及能量回收技術及4伏至40伏寬輸入範圍的升壓轉換器