跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 06:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊子賢
研究生(外文):Yang, Tzu-Hsien
論文名稱:-10至-20V具有閾值電壓追蹤技術的反向升降壓驅動氮化鎵驅動器達到小於1µA漏電流並應用於20MHz空乏型氮化鎵金屬-絕緣體-半導體高電子遷移率電晶體
論文名稱(外文):A -10 to -20V Inverting Buck-Boost Drive GaN Driver with sub-1µA Leakage Current Vth Tracking Technique for 20MHz Depletion-mode GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
口試委員:王清松黃立仁
口試委員(外文):Wang, Cing-SongHuang, Li-Ren
口試日期:2021-10-26
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:47
中文關鍵詞:漏電流控制閾值電壓追蹤氮化鎵米勒平台偵測器電壓轉換速率控制極低靜態電流
外文關鍵詞:Leakage current controlVth TrackingGallium Nitride (GaN)Miller plateau detectorSlew rate controlUltra-low quiescent current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:124
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要 i
ABSTRACT ii
誌 謝 iii
Contents iv
Figure Captions vi
Table Captions vii
Chapter 1 Introduction of GaN HEMTs 1
1.1 Gallium Nitride (GaN) FETs 1
1.2 The Characteristics and issues of D-GaN HEMT 3
1.3 The Characteristics and issues of E-GaN HEMT 5
1.4 The Cascode D-GaN 7
1.5 The FP and MIS structure in the proposed D-GaN MIS-HEMT 8
1.6 Thesis Organization 9
Chapter 2 Prior Art and Design Goals 10
2.1 Shortcomings of Cascode D-GaN structure 10
2.1.1 Avalanche problem 10
2.1.2 Efficiency degradation 13
2.1.3 Reverse recovery 14
2.2 Issues of gate charge current control 15
2.3 Design Goals 16
2.3.1 Directly drive with Vth tracking technique 16
2.3.2 Proposed EMI Reduction and Fast Switching Techniques 17
Chapter 3 Proposed Anti-Conduction Control Technique 19
3.1 Architecture of Proposed Anti-Conduction Control Technique 19
3.2 Timing Diagram of the Anti-Conduction Control Technique 20
3.3 Low Offset Sense Amplifier 23
3.3.1 Architecture of the Low Offset Sense Amplifier 23
3.3.2 Sense Amplifier with Offset Cancellation 24
3.3.3 Comparator with Auto-Zeroing 25
3.4 The Accurate ULP UVLO 26
3.4.1 Architecture of the Accurate ULP UVLO 26
3.4.2 Timing diagram of the Accurate ULP UVLO 27
Chapter 4 Proposed EMI Reduction and Fast Switching Techniques 29
4.1 Miller Plateau Detector and Slew Rate Control 29
4.1.1 Slew rate control 30
4.1.2 Miller Plateau Detector 31
4.2 Inverting Buck-Boost Converter with ESFC 33
4.3 Fast Level Shifter 34
Chapter 5 Experimental Results 36
5.1 Chip Micrograph 36
5.2 Measured Vth tracking Process 37
5.3 Measured ESFC Operation and Switching Waveforms 38
5.4 Statistics of the Measurement Results 40
5.5 Comparisons with the Other GaN Driver Methodologies 42
Chapter 6 Conclusion and Future Work 44
6.1 Conclusion 44
6.2 Future Work 44
Reference 45
[1] F. Medjdoub et al., "GaN-on-Si HEMTs Above 10 W/mm at 2 GHz together with high thermal stability at 325°C," The 5th European Microwave Integrated Circuits Conference, 2010, pp. 37-40.
[2] D. F. Kimball et al., “High-Efficiency Envelope-Tracking W-CDMA Base-Station Amplifier Using GaN HFETs,” IEEE Transactions on Microwave Theory and Techniques, pp. 3848-3856, Nov. 2006.
[3] Y. Hong, K. Mukai et al, “High Efficiency GaN Switching Converter IC with Bootstrap Driver for Envelope Tracking Applications,” IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp. 353-356, 2013.
[4] T. Fujiwara et al., “All Gallium Nitride Envelope-Tracking Multiband Power Amplifier Using 200MHz Switching Buck-Converter,” 2016 11th European Microwave Integrated Circuits Conference (EuMIC), pp. 125-128.
[5] X. Ke, et al., “A 10MHz 3-to-40V VIN Tri-Slope Gate Driving GaN DC-DC Converter with 40.5dBµV Spurious Noise Compression and 79.3% Ringing Suppression for Automotive Applications,” ISSCC, pp.430-431, Feb. 2017.
[6] A. Seidel et al., “A Fully Integrated Three-Level 11.6nC Gate Driver Supporting GaN Gate Injection Transistors,” ISSCC, pp. 384-385, Feb. 2018.
[7] M. Kaufmann et al., “A Monolithic E-Mode GaN 15W 400V Offline Self-Supplied Hysteretic Buck Converter with 95.6% Efficiency,” ISSCC, pp. 288-290, Feb. 2020.
[8] J. Zhu, et al., “A 600V GaN Active Gate Driver with Dynamic Feedback Delay Compensation Technique Achieving 22.5% Turn-On Energy Saving,” ISSCC, pp. 462-463, Feb. 2021.
[9] H. -Y. Chen et al., “A Fully Integrated GaN-on-Silicon Gate Driver and GaN Switch with Temperature-compensated Fast Turn-on Technique for Improving Reliability,” ISSCC, pp. 460-462, Feb. 2021.
[10] X. Huang, Q. Li. Z. Liu, and F. C. Lee, “Analytical Loss Model of High Voltage GaN HEMT in Cascode Configuration,” IEEE Energy Conversion Congress and Exposition, 2013, pp. 3587-3594.
[11] X. Huang, Z. Liu, Q. Li and F. C. Lee, “Evaluation and Application of 600 V GaN HEMT in Cascode Structure,” IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2453-2461, May 2014.
[12] Z. Liu, X. Huang, F. C. Lee, and Q. Li, “Package Parasitic Inductance Extraction and Simulation Model Development for the High-Voltage Cascode GaN HEMT,” IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 1977-1985, April 2014.
[13] N. Hari, T. Logan and R. McMahon, “Design Considerations for 600 V GaN Cascode Based Half-Bridge Converter Systems for Utility Based Applications,” 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), pp. 1-6, 2016.
[14] H. -Y. Wu et al., "GaN Cascode Performance Optimization for High Efficient Power Applications," 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2016, pp. 255-258.
[15] X. Huang, et al., "Characterization and Enhancement of High-Voltage Cascode GaN Devices," IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 270-277, Feb. 2015.
[16] M. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, “Current Collapse Suppression by Gate Field-Plate in AlGaN/GaN HEMTs,” IEEE Electron Device Letters, vol. 34, no. 11, pp. 1379–1381, 2013.
[17] H. Huang, Y. C. Liang, G. S. Samudra, T. Chang and C. Huang, “Effects of Gate Field Plates on the Surface State Related Current Collapse in AlGaN/GaN HEMTs,” IEEE Transactions on Power Electronics, vol. 29, no. 5, pp. 2164-2173, May 2014.
[18] S. Rajabi, et al., "A Novel Double Field-Plate Power High Electron Mobility Transistor based on AlGaN/GaN for Performance Improvement," International Conference on Signal Processing, Communication, Computing and Networking Technologies, 2011, pp. 272-276.
[19] Y. Kong, et al., “Monolithic Integration of E/D-Mode AlGaN/GaN MIS-HEMTs,” IEEE Electron Device Letters, vol. 35, no. 3, pp. 336–338, Mar. 2014.
[20] T. Gao, R. Xu, Y. Kong, J. Zhou, K. Zhang, C. Kong, D. Peng, and T. Chen, “Integrated Enhancement/Depletion-Mode GaN MIS-HEMTs for High-Speed Mixed-Signal Applications,” Phys. Status Solidi A, vol. 213, no. 5, pp. 1241–1245, May 2016.
[21] Y. C. Lin et al., "Optimization of Gate Insulator Material for GaN MIS-HEMT," 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2016, pp. 115-118.
[22] X. Huang, et al., “Avoiding Si MOSFET Avalanche and Achieving Zero-Voltage Switching for Cascode GaN Devices,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 593-600, January 2016.
[23] W. Du, X. Huang, F. C. Lee, Q. Li and W. Zhang, “Avoiding Divergent Oscillation of Cascode GaN Device Under High Current Turn-Off Condition,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1002-1009, March 2016.
[24] X. Huang, et al., "Characterization and Enhancement of High-Voltage Cascode GaN Devices," IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 270-277, Feb. 2015.
[25] Y. Wu and Y. Lai, "Reliability & Performance Related to Internal Avalanche of GaN Cascode Devices," IEEE 6th WiPDA, 2018, pp. 94-97.
[26] K. Cho, "An Ultra-Low Quiescent Current Under-Voltage Lockout Circuit for a High-Voltage Gate Driver IC," Electronics, vol. 9, (10), pp. 1729, 2020.
[27] M. H. Cho, et al., “Development of Undervoltage Lockout (UVLO) Circuit Configurated Schmitt Trigger,” IEEE Proc. ISOCC, Nov 2015, pp. 59–60.
[28] S. Chatterjee and G. Chowdary, "A 200-pA Under-Voltage Lockout Circuit for Ultra-Low Power Applications," ISCAS, 2019, pp. 1-4.
[29] A. Kamel and S. Ibrahim, "A 1.6-nA Quiescent Current Bandgap Reference in 130-nm CMOS Technology," 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2015, pp. 512-515.
[30] L. Magnelli, F. Crupi, P. Corsonello, C. Pace and G. Iannaccone, "A 2.6 nW, 0.45 V Temperature-Compensated Subthreshold CMOS Voltage Reference," IEEE Journal of Solid-State Circuits, vol. 46, no. 2, pp. 465-474, Feb. 2011.
[31] O. E. Mattia, et al., "0.9 V, 5 nW, 9 ppm/oC Resistorless Sub-Bandgap Voltage Reference in 0.18μm CMOS," 2014 IEEE 5th Latin American Symposium on Circuits and Systems, 2014, pp. 1-4.
[32] Y. Zhang, S. Wang and Y. Chu, “Analysis and Comparison of the Radiated Electromagnetic Interference Generated by Power Converters with Si MOSFETs and GaN HEMTs,” IEEE Transactions on Power Electronics, vol. 35, no. 8, pp. 8050-8062, Aug. 2020.
[33] D. Han, S. Li, W. Lee, W. Choi and B. Sarlioglu, “Trade-Off Between Switching Loss and Common Mode EMI Generation of GaN Devices-Analysis and Solution,” IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 843-847, March 2017.
電子全文 電子全文(網際網路公開日期:20261028)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 具快速暫態響應之平均電流模式降壓型直流直流電源轉換器
2. 具有基於氮化鎵之二極體等效技術的積體化氮化鎵驅動器及氮化鎵功率開關實現50MHz操作頻率及小於0.2ns的死區時間控制
3. 應用於高功率降壓轉換器的高精度電流檢測技術之自校準重建電路
4. 應用於車載48V至1V 降壓轉換器使用高電壓存儲低電壓升壓自舉技術及早期比較導通時間產生器可達到準確的納秒脈衝及92.8%的高效率
5. 利用數位自動歸零方法達成誤差小於1%之雙向電流感測應用於20A之高功率降壓轉換器
6. 峰值效率94.3%且具有0.03mV/mA低串擾與185nA極低靜態電流的自適應切換CCM與DCM單電感多輸出升降壓轉換器
7. 應用於150MHz頻寬5G NR射頻可提供89.7%效率以及減少37%線性放大器電流並由小電容輔助的能源回收封包追蹤電源調製器
8. 應用於射頻獵能系統且具有改進負載瞬態響應的雙模式無縫切換低壓降線性穩壓器
9. 使用單一電感雙輸出降壓轉換器於高頻元件上之電源管理
10. 應用於300公尺遠距離物體偵測可提供200瓦高功率光達系統並具有保護及能量回收技術及4伏至40伏寬輸入範圍的升壓轉換器
11. 卷積神經網路基於元學習引擎設計應用於閉迴路帕金森病症偵測
12. 具有99.99%電流效率以及0.5mV低輸出電壓漣波的用於改善電源電壓調整率之前饋控制數位低壓降穩壓器
13. 以可自我調變式的補償電容及補償電阻來實現可自我調變相位裕度達到快速暫態響應之電流模式直流直流降壓轉換器
14. 具復位機制用於改善負載調節恆定導通時間降壓轉換器
15. 應用於寬輸入低輸出之適應式固定導通時間控制直流對直流降壓轉換器