跳到主要內容

臺灣博碩士論文加值系統

(44.192.247.184) 您好!臺灣時間:2023/02/06 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃梓瑋
研究生(外文):Huang, Zih-Wei
論文名稱:基於FPGA實現非逆向運動學之多軸機器手臂軌跡追蹤演算法
論文名稱(外文):FPGA-based Trajectory Tracking Algorithm of Multi DOFs Robot Arm Without Inverse Kinematic
指導教授:趙昌博
指導教授(外文):Chao, Chang-Po
口試委員:林錫寬黃聖傑
口試委員(外文):Lin, Shir-KuanHuang, Sheng-Chieh
口試日期:2021-12-15
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:英文
論文頁數:55
中文關鍵詞:嵌入式系統FPGA軌跡規劃逆向運動學笛卡爾空間即時系統正向運動學
外文關鍵詞:embedded systemFPGAtrajectory planninginverse kinematicCartesian spacereal-time systemforward kinematic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去有很多不同的控制器可以用於控制機械手臂,然而FPGA仍是主流的選擇之一。在工業中,FPGA之於機械手臂更是被預期將朝向兩大應用層面發展包含嵌入式手臂應用和電力電子與驅動器應用,現今機器人學中倘若要有軌跡控制的需求,大多會選擇先在空間中進行軌跡規劃後再利用逆向運動學(Inverse Kinematic)計算出各軌跡上的點對應到手臂各軸的角度,然而使用逆向運動學解出得到輸出控制命令方程式極為複雜,需要帶入過多的條件,對於硬體條件實踐相對嚴苛,不僅邏輯元件消耗資源多,在路徑規劃層面更需要與軟韌體進行配合,導致整個系統過於龐大。而這個研究主要是設計一個軌跡追蹤演算法是基於運動規劃的正向運動學,在路徑規劃加以限制,實現一個不需利用逆向運動學就可以達到軌跡控制的系統。這個系統預期可以有效降低 LEs的數量並且提供低誤差與高速的效能。
In the past, many different controllers that could be used for robotic control, however, the classic position controller for robots by FPGA is still the most popular. In the industry, FPGA for robotic arms control is expected to develop towards two major application including embedded arm applications and power electronics driver applications. Nowadays, if there is a need for trajectory planning on robot, most of them will plan in Cartesian space and use inverse kinematic to calculate the angle of each angle corresponding to each axis of the robot arm. However, inverse kinematics solution is extremely complicated and requires too many boundary conditions that cause implementation on hardware is relatively strict, not only logic components consuming, but also need to cooperate with soft or firmware at the path planning level, which resulting in the entire system is too large. And this research is mainly to design a real-time trajectory tracking algorithm based on the forward kinematics of motion planning, and limit the path planning to realize a system that can achieve trajectory control system without using inverse kinematics. This system is expected to reduce LEs (logic elements) in FPGA with high speed and low path error.
摘要 i
ABSTRACT ii
Table of Contents iv
FIGURE CAPTIONS vi
TABLE CAPTIONS vii
I. Introduction 1
1.1 Foreword 1
1.2 Motivative 3
1.3 The Structure of System 4
II. Related Research Background 6
2.1 Kinematic 6
2.1.1 Denavit–Hartenberg parameters 6
2.1.2 Forward Kinematic 8
2.1.3 Inverse Kinematic 11
2.2 RRT 12
2.3 Joint Sampled based Trajectory Planning 15
III. FPGA-based Trajectory Planning Algorithm 24
3.1 ChangeTheta Module 26
3.2 Forward Kinematic Module 27
3.3 Angle Determine Module 29
3.3.1 Preprocessing Module 29
3.3.2 Dot Module 31
3.3.3 distance Module 32
3.3.4 Judgement Module 33
3.4 ThetaCorrection Module 36
3.5 Overall Module 37
IV. Simulation and Testing Result 39
4.1 Background 39
4.2 Determine ???????? 39
4.3 Simulation of Trajectory Tracking Algorithm 41
4.4 FPGA Implementation 43
4.4.1 Gate Level Simulation 43
4.4.2 Testing 46
4.5 Specification Comparison 49
V. Conclusion and Future Work 51
5.1 Conclusion 51
5.2 Future Work 51
Reference 53
[1] B. Zhang, R. Xiong, J. Wu, ”Kinematics and Trajectory Planning of a Novel Humanoid Manipulator for Table Tennis,” in Proc. of 2011 International Conference on Electrical and Control Engineering (ICECE), pp.3047 - 3051, 2011.
[2] Porawagama, C. D., Munasinghe, S. R. “Reduced jerk joint space trajectory planning method using 5-3-5 spline for robot manipulators.” In: 7th International Conference on Information and Automation for Sustainability, Colombo, 22-24 Dec. 2014, pp. 1-6. doi: 10.1109/ICIAFS.2014.7069580.
[3] J. Sun, X. Han, Y. Zuo, S. Tian, J. Song and S. Li, "Trajectory Planning in Joint Space for a Pointing Mechanism Based on a Novel Hybrid Interpolation Algorithm and NSGA-II Algorithm," in IEEE Access, vol. 8, pp. 228628-228638, 2020, doi: 10.1109/ACCESS.2020.3042890.
[4] C. Zhang and Z. Zhang, "Research on Joint Space Trajectory Planning of SCARA Robot Based on SimMechanics," 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2019, pp. 1446-1450, doi: 10.1109/ITNEC.2019.8729547.
[5] J. Wei, M. Jin and Y. Liu, "A New Method to Reduce Energy in Trajectory Planning," 2020 6th International Conference on Control, Automation and Robotics (ICCAR), 2020, pp. 1-6, doi: 10.1109/ICCAR49639.2020.9107988.
[6] LaValle, Steven M. (October 1998). "Rapidly-exploring random trees: A new tool for path planning." Technical Report. Computer Science Department, Iowa State University (TR 98–11).
[7] X. Han, T. Wang and B. Liu, "Path planning for robotic manipulator in narrow space with search algorithm," 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), 2017, pp. 339-344, doi: 10.1109/ICARM.2017.8273185.
[8] B. Lacevic, P. Rocco and M. Strandberg, "Safe motion planning for articulated robots using RRTs," 2011 XXIII International Symposium on Information, Communication and Automation Technologies, 2011, pp. 1-7, doi: 10.1109/ICAT.2011.6102089.
[9] M. Vande Weghe, D. Ferguson and S. S. Srinivasa, "Randomized path planning for redundant manipulators without inverse kinematics," 2007 7th IEEE-RAS International Conference on Humanoid Robots, 2007, pp. 477-482, doi: 10.1109/ICHR.2007.4813913.
[10] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan and M. W. Naouar, "FPGAs in Industrial Control Applications," in IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp. 224-243, May 2011, doi: 10.1109/TII.2011.2123908.
[11] Roy Featherstone, Robot Dynamics Algorithms, Springer; 1st edition (July 31, 1987)
[12] L. Gomes, E. Monmasson, M. Cirstea and J. Rodriguez-Andina, "Industrial electronic control: FPGAs and embedded systems solutions," in Proc. 39th Annual Conference of the IEEE Industrial Electronics Society IECON 2013, pp. 60-65
[13] Y.S. Kung and G.S. Shu, "Development of a FPGA-based Motion Control IC for Robot Arm," in Proceedings of the IEEE International Conference on Industrial Technology, pp.1 397-1402, Dec. 14 17, 2005.
[14] J. F. Canny, The complexity of robot motion planning. Cambridge, MA, USA MIT Press, 1988
[15] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.
[16] C. Klein and C. Huang, “Review on pseudoinverse control for use with kinematically redundant manipulators,” IEEE Transactions on Systems, Man and Cybernetics, vol. 13, no. 3, pp. 245–250, 198
[17] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated approach to inverse kinematics and path planning for redundant manipulators,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 2006.
[18] Qingwen Qu, Jixiang Wan and Xiujun Sun, "Trajectory planning of a 6-DOF robot based on RBF neural networks," 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2007, pp. 324-329, doi: 10.1109/ROBIO.2007.4522182.
[19] Q. Zhang, Z. Xie, F. Ni, H. Cai and H. Liu, "A high performance FPGA-based joint controller with hardware/software co-design method," 2012 IEEE International Conference on Mechatronics and Automation, 2012, pp. 1109-1114, doi: 10.1109/ICMA.2012.6283405.
[20] Y. Kung, K. Tseng, C. Chen, H. Sze and A. Wang, "FPGA-Implementation of Inverse Kinematics and Servo Controller for Robot Manipulator," 2006 IEEE International Conference on Robotics and Biomimetics, 2006, pp. 1163-1168, doi: 10.1109/ROBIO.2006.340093.
[21] A. Collet, D. Berenson, S. S. Srinivasa and D. Ferguson, "Object recognition and full pose registration from a single image for robotic manipulation," 2009 IEEE International Conference on Robotics and Automation, 2009, pp. 48-55, doi: 10.1109/ROBOT.2009.5152739.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊