跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝裕昇
研究生(外文):Hsieh, Yu-Shen
論文名稱:利用CO2雷射和使用電漿聚合薄膜沉積在具有高機械強度的陶瓷骨支架上進行表面改質以增進細胞附著
論文名稱(外文):Surface Modification of High-compressive-strength CaCO3/SiO2 Ceramic Bone Scaffolds by CO2 Laser and Plasma-polymerized Coating to Improve MG63 Cell Attachment
指導教授:鄭雲謙
指導教授(外文):Cheng, Yun-Chien
口試委員:鄭中緯蔡佳宏
口試委員(外文):Cheng, Chung-WeiTsai, Chia-Hung
口試日期:2021-09-16
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:50
中文關鍵詞:常壓電漿CO2雷射加工陶瓷骨支架表面改質薄膜沉積細胞貼附
外文關鍵詞:atmospheric pressure plasmaCO2 laser modificationceramic bone scaffoldsurface modificationcoating depositioncell attachment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的在於利用常壓電漿以及CO2雷射對具有高抗壓強度的CaCO3/SiO2陶瓷骨支架進行表面改質,讓其表面有更好的細胞附著能力。陶瓷生物材料是常見的骨支架材料且具有良好的生物相容性和生物降解性,但在機械強度上遠低於人的骨頭,可能造成無法支撐骨骼。本研究所使用的CaCO3/SiO2陶瓷骨支架與常見的相比,具有更高的抗壓強度,且目前尚未有研究利用此材料進行表面改質,並發現此骨支架的細胞附著受到表面結構和無極性官能基的影響導致不甚理想,因此本研究將會使用雷射和電漿兩種表面改質結合方法改善細胞貼附。
本研究先透過CO2雷射加工利用燒熔的方式,讓骨支架的表面從粗糙變的平坦,以利細胞貼附和觀察。接著進行常壓電漿薄膜沉積,使用氦氣作為工作氣體,再與乙烯和水霧混合進入電漿區域,經過分子解離與聚合,形成薄膜沉積在骨支架表面,並在表面生成官能基。最後在骨支架上培養MG63人類骨瘤細胞,並觀察細胞附著以及生長狀況。
實驗結果顯示,利用掃描電子顯微鏡可以觀察到經過雷射加工處理後的骨支架表面從充滿微小孔洞且粗糙變成平滑,透過白光干涉儀測量平均粗糙度從原本13.94 μm降至10 μm以下。由細胞測試發現雖然活性沒有增加,但是細胞在表面上有更好的貼附。電漿薄膜沉積的部分,薄膜在Silicon wafer上增強了細胞活性,在第七天PrestoBlue活性試劑的結果由29%提升至89%,但在骨支架上的電漿薄膜因為比未處理的疏水,導致無法增加細胞活性。本研究結果雖然沒有增加細胞活性,但是改善了表面細胞貼附,對於後續的細胞行為會有正面的影響。
The purpose of this study is to modify the surface of the CaCO3/SiO2 ceramic bone scaffold with high compressive strength property by using atmospheric plasma and CO2 laser. After the modifications, the cell attachment of the scaffold will be enhanced. Common bone scaffold materials are ceramic biomaterials. Although these kinds of biomaterials have biocompatibility and biodegradability, their mechanical strength is lower than that of human bones, which may cause bone support to be unstable. The CaCO3/SiO2 bone scaffold used in this study has higher compressive strength compared with common ceramic bone scaffolds. In addition, this scaffold hasn't been used and modified the surface by other research. It is found that the cell attachment of the bone scaffold was not ideal due to the surface properties. Therefore, this study will choose suitable surface modification methods, which are expected to enhance the cell attachment on CaCO3/SiO2 bone scaffold.
The surface of this high compressive strength bone scaffold is quite rough. The CO2 laser treatment is used to flatten the surface to facilitate cell attachment and observation. The coating is deposited by atmospheric plasma. Working gas is helium. The precursors are ethylene and water aerosol. Helium and precursor are mix in the plasma region. After dissociation and polymerization, the plasma coating with functional groups will be deposited on the surface of the bone scaffold. The MG63 osteoblast cell will be cultured on the processed scaffold to observe the cell attachment.
The experimental results showed that the surface of the laser-treated bone scaffold changed from roughness to smoothness. Average roughness measured by white light interferometer reduced from 13.94 μm to less than 10 μm. After seven days, although the cell viability did not increase, the cell attachment on the surface became better. In the part of plasma deposition, the coating on the silicon wafer enhanced the cell viability. The result of the PrestoBlue cell viability reagent increased from 29% to 89% on the seventh day. However, the plasma coating on the bone scaffold could not increase the cell viability because it was more hydrophobic than the original bone scaffold. Therefore, the results of this study did not increase cell adhesion, but improved cell attachment on the surface, which would positively affect subsequent cell behavior.
中文摘要 I
Abstract II
目錄 IV
圖目錄 VII
表目錄 IX
第一章、 緒論 1
1.1 研究背景 1
1.1.1 生醫材料簡介 1
1.1.2 生物材料的表面地形對細胞的影響 2
1.1.3 生物材料的官能基對細胞的影響 2
1.2 文獻回顧 3
1.2.1 常見的陶瓷骨支架 3
1.2.2 常見改變生物材料表面地形方法 3
1.2.2.1 噴砂 3
1.2.2.2 電子束紋理 4
1.2.2.3 酸蝕刻 4
1.2.2.4 研磨 4
1.2.2.5 雷射 4
1.2.3 電漿對骨支架表面能改質 4
1.2.3.1 低壓電漿表面改質 5
1.2.3.2 常壓電漿表面改質 5
1.3 研究動機與目標 6
1.4 論文架構 8
第二章、 實驗原理 9
2.1 電漿化學氣相沉積 9
2.2 CO2雷射 10
2.3 掃描電子顯微鏡 11
2.4 傅立葉轉換紅外光譜儀 11
2.5 白光干涉儀 12
2.6 PrestoBlue細胞活性試劑 12
第三章、 實驗方法 14
3.1 實驗流程與參數 14
3.2 實驗設備 18
3.2.1 常壓氦氣電漿裝置 18
3.2.2 氣體管路系統 19
3.2.3 電源供應器 21
3.2.4 雷射 23
3.3 實驗量測系統與分析儀器 24
3.3.1 傅立葉轉換紅外光譜儀 24
3.3.2 掃描電子顯微鏡 25
3.3.3 立體顯微鏡 26
3.3.4 白光干涉儀 27
3.3.5 接觸角量測儀 27
3.3.6 微量盤檢測儀 28
第四章、 實驗結果與討論 29
4.1 CO2雷射骨支架試片處理結果 29
4.1.1 雷射處理後的表面形貌結果與討論 29
4.1.2 雷射處理後細胞活性測試 32
4.1.3 細胞在雷射處理後的骨支架試片上第七天的貼附狀況 33
4.1.4 雷射處理後化性變化測試 36
4.1.5 骨支架試片雷射後的結果討論 37
4.2 電漿沉積處理結果 37
4.2.1 電漿薄膜沉積在Silicon wafer上的結果 38
4.2.1.1 電漿薄膜沉積在Silicon wafer上的FTIR結果 38
4.2.1.2 電漿薄膜沉積在Silicon wafer上的親疏水性結果 39
4.2.1.3 電漿薄膜沉積在Silicon wafer上的細胞活性結果 39
4.2.1.4 電漿薄膜沉積在Silicon wafer上的細胞貼附染色結果 40
4.2.2 電漿薄膜沉積在骨支架上的結果 41
4.2.2.1 電漿薄膜沉積在骨支架上的親疏水性結果 41
4.2.2.2 電漿薄膜沉積在骨支架上的細胞活性結果 42
4.2.2.3 電漿薄膜沉積在骨支架上的細胞染色拍攝結果 44
4.2.3 電漿薄膜沉積的實驗結果與討論 45
第五章、 結論與未來工作 47
5.1 結論 47
5.2 未來工作 47
參考文獻 48
[1] Giannoudis, P. V., Dinopoulos, H., and Tsiridis, E. J. I., 2005, "Bone substitutes: an update," 36(3), pp. S20-S27.
[2] Eltom, A., Zhong, G., Muhammad, A. J. A. i. M. S., and Engineering, 2019, "Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review," 2019.
[3] Stevens, M. M. J. M. t., 2008, "Biomaterials for bone tissue engineering," 11(5), pp. 18-25.
[4] Albrektsson, T., and Johansson, C. J. E. s. j., 2001, "Osteoinduction, osteoconduction and osseointegration," 10(2), pp. S96-S101.
[5] Hutmacher, D. W., 2000, "Scaffolds in tissue engineering bone and cartilage," The biomaterials: Silver jubilee compendium, Elsevier, pp. 175-189.
[6] Ratner, B. D., Hoffman, A. S., Schoen, F. J., and Lemons, J. E., 2004, Biomaterials science: an introduction to materials in medicine, Elsevier.
[7] Lim, J. Y., Dreiss, A. D., Zhou, Z., Hansen, J. C., Siedlecki, C. A., Hengstebeck, R. W., Cheng, J., Winograd, N., and Donahue, H. J., 2007, "The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography," Biomaterials, 28(10), pp. 1787-1797.
[8] Moriguchi, Y., Lee, D.-S., Chijimatsu, R., Thamina, K., Masuda, K., Itsuki, D., Yoshikawa, H., Hamaguchi, S., and Myoui, A. J. P. o., 2018, "Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration," 13(3), p. e0194303.
[9] Keselowsky, B. G., Collard, D. M., García, A. J. J. J. o. B. M. R. P. A. A. O. J. o. T. S. f. B., The Japanese Society for Biomaterials,, Biomaterials, T. A. S. f., and Biomaterials, t. K. S. f., 2003, "Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion," 66(2), pp. 247-259.
[10] Clark, P., Connolly, P., Curtis, A., Dow, J., and Wilkinson, C. J. D., 1987, "Topographical control of cell behaviour. I. Simple step cues," 99(3), pp. 439-448.
[11] Chang, H.-I., and Wang, Y., 2011, "Cell responses to surface and architecture of tissue engineering scaffolds," Regenerative medicine and tissue engineering-cells and biomaterials, InTechOpen.
[12] Lee, S. J., San Choi, J., Park, K. S., Khang, G., Lee, Y. M., and Lee, H. B. J. B., 2004, "Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes," 25(19), pp. 4699-4707.
[13] Curtis, A., and Wilkinson, C. J. B., 1997, "Topographical control of cells," 18(24), pp. 1573-1583.
[14] Erol, M., Özyuğuran, A., Özarpat, Ö., and Küçükbayrak, S. J. J. o. t. E. C. S., 2012, "3D Composite scaffolds using strontium containing bioactive glasses," 32(11), pp. 2747-2755.
[15] Padmanabhan, S. K., Gervaso, F., Carrozzo, M., Scalera, F., Sannino, A., and Licciulli, A. J. C. I., 2013, "Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering," 39(1), pp. 619-627.
[16] Santos, C. F., Silva, A. P., Lopes, L., Pires, I., Correia, I. J. J. M. s., and C, e., 2012, "Design and production of sintered β-tricalcium phosphate 3D scaffolds for bone tissue regeneration," 32(5), pp. 1293-1298.
[17] Martin, J., Schwartz, Z., Hummert, T., Schraub, D., Simpson, J., Lankford Jr, J., Dean, D. D., Cochran, D. L., and Boyan, B. J. J. o. b. m. r., 1995, "Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast‐like cells (MG63)," 29(3), pp. 389-401.
[18] Rajnicek, A., Britland, S., and McCaig, C. J. J. o. c. s., 1997, "Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type," 110(23), pp. 2905-2913.
[19] Kunzler, T. P., Drobek, T., Sprecher, C. M., Schuler, M., and Spencer, N. D. J. A. S. S., 2006, "Fabrication of material-independent morphology gradients for high-throughput applications," 253(4), pp. 2148-2153.
[20] Deligianni, D. D., Katsala, N. D., Koutsoukos, P. G., and Missirlis, Y. F., 2000, "Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength," Biomaterials, 22(1), pp. 87-96.
[21] Ball, M. D., Prendergast, U., O'Connell, C., Sherlock, R. J. E., and pathology, m., 2007, "Comparison of cell interactions with laser machined micron-and nanoscale features in polymer," 82(2), pp. 130-134.
[22] Brandenburg, R. J. P. S. S., and Technology, 2017, "Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments," 26(5), p. 053001.
[23] Choi, Y.-R., Kwon, J.-S., Song, D.-H., Choi, E. H., Lee, Y.-K., Kim, K.-N., and Kim, K.-M. J. T. S. F., 2013, "Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation," 547, pp. 235-240.
[24] Clover, J., and Gowen, M., 1994, "Are MG-63 and HOS TE85 human osteosarcoma cell lines representative models of the osteoblastic phenotype?," Bone, 15(6), pp. 585-591.
[25] Gentleman, M. M., and Gentleman, E., 2014, "The role of surface free energy in osteoblast–biomaterial interactions," Int. Mater. Rev., 59(8), pp. 417-429.
[26] Liu, Y., Tan, Z., Chen, X., Li, X., Zhang, H., Pan, J., and Wang, X., 2018, "An investigation on the effects of air on electron energy in atmospheric pressure helium plasma jets," Physics of Plasmas, 25(3), p. 033514.
[27] Maeshige, K., Washio, G., Yagisawa, T., and Makabe, T., 2002, "Functional design of a pulsed two-frequency capacitively coupled plasma in CF 4/Ar for SiO 2 etching," J. Appl. Phys., 91(12), pp. 9494-9501.
[28] Walsh, L. J. A. d. j., 2003, "The current status of laser applications in dentistry," 48(3), pp. 146-155.
[29] Movasaghi, Z., Rehman, S., and ur Rehman, D. I., 2008, "Fourier transform infrared (FTIR) spectroscopy of biological tissues," Applied Spectroscopy Reviews, 43(2), pp. 134-179.
[30] Liu, Y. H., Yang, C. H., Lin, T. R., and Cheng, Y. C., 2018, "Using aerosol‐assisted atmospheric‐pressure plasma to embed proteins onto a substrate in one step for biosensor fabrication," Plasma Processes and Polymers, 15(9), p. 1800001.
[31] Wan, Y., Wang, Y., Liu, Z., Qu, X., Han, B., Bei, J., and Wang, S., 2005, "Adhesion and proliferation of OCT-1 osteoblast-like cells on micro-and nano-scale topography structured poly (L-lactide)," Biomaterials, 26(21), pp. 4453-4459.
[32] Naganuma, T., 2017, "The relationship between cell adhesion force activation on nano/micro-topographical surfaces and temporal dependence of cell morphology," Nanoscale, 9(35), pp. 13171-13186.
[33] Davis, D. H., Giannoulis, C. S., Johnson, R. W., and Desai, T. A., 2002, "Immobilization of RGD to< 1 1 1> silicon surfaces for enhanced cell adhesion and proliferation," Biomaterials, 23(19), pp. 4019-4027.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊