|
1. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012, 2 (1), 591. 2. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643-647. 3. Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater 2013, 25 (27), 3727-32. 4. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed Engl 2014, 53 (37), 9898-903. 5. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319. 6. Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology 2014, 9 (11), 927-932. 7. Yang, S.; Zheng, Y. C.; Hou, Y.; Chen, X.; Chen, Y.; Wang, Y.; Zhao, H.; Yang, H. G., Formation Mechanism of Freestanding CH3NH3PbI3 Functional Crystals: In Situ Transformation vs Dissolution–Crystallization. Chemistry of Materials 2014, 26 (23), 6705-6710. 8. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science 2014, 7 (8), 2619-2623. 9. Zhang, H.; Mao, J.; He, H.; Zhang, D.; Zhu, H. L.; Xie, F.; Wong, K. S.; Grätzel, M.; Choy, W. C. H., A Smooth CH3NH3PbI3 Film via a New Approach for Forming the PbI2 Nanostructure Together with Strategically High CH3NH3I Concentration for High Efficient Planar-Heterojunction Solar Cells. Advanced Energy Materials 2015, 5 (23), 1501354. 10. Liu, T.; Hu, Q.; Wu, J.; Chen, K.; Zhao, L.; Liu, F.; Wang, C.; Lu, H.; Jia, S.; Russell, T.; Zhu, R.; Gong, Q., Mesoporous PbI2 Scaffold for High-Performance Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (3), 1501890. 11. Cheng, N.; Liu, P.; Bai, S.; Yu, Z.; Liu, W.; Guo, S.-S.; Zhao, X.-Z., Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment. Journal of Power Sources 2016, 319, 111-115. 12. Xie, Y.; Shao, F.; Wang, Y.; Xu, T.; Wang, D.; Huang, F., Enhanced Performance of Perovskite CH3NH3PbI3 Solar Cell by Using CH3NH3I as Additive in Sequential Deposition. ACS Applied Materials & Interfaces 2015, 7 (23), 12937-12942. 13. Liu, J.; Shirai, Y.; Yang, X.; Yue, Y.; Chen, W.; Wu, Y.; Islam, A.; Han, L., High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1−x-PbI2 for Solar Cells. Advanced Materials 2015, 27 (33), 4918-4923. 14. Yang, S.; Chen, Y.; Zheng, Y. C.; Chen, X.; Hou, Y.; Yang, H. G., Formation of high-quality perovskite thin film for planar heterojunction solar cells. RSC Advances 2015, 5 (85), 69502-69508. 15. Mao, P.; Zhou, Q.; Jin, Z.; Li, H.; Wang, J., Efficiency-Enhanced Planar Perovskite Solar Cells via an Isopropanol/Ethanol Mixed Solvent Process. ACS Applied Materials & Interfaces 2016, 8 (36), 23837-23843. 16. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398. 17. Yu, Y.; Zhao, D.; Grice, C. R.; Meng, W.; Wang, C.; Liao, W.; Cimaroli, A. J.; Zhang, H.; Zhu, K.; Yan, Y., Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances 2016, 6 (93), 90248-90254. 18. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136 (2), 622-625. 19. Zhu, P.; Chen, C.; Gu, S.; Lin, R.; Zhu, J., CsSnI3 Solar Cells via an Evaporation-Assisted Solution Method. Solar RRL 2018, 2 (4), 1700224. 20. Ran, C.; Xi, J.; Gao, W.; Yuan, F.; Lei, T.; Jiao, B.; Hou, X.; Wu, Z., Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells. ACS Energy Letters 2018, 3 (3), 713-721. 21. Li, F.; Zhang, C.; Huang, J.-H.; Fan, H.; Wang, H.; Wang, P.; Zhan, C.; Liu, C.-M.; Li, X.; Yang, L.-M.; Song, Y.; Jiang, K.-J., A Cation-Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Angewandte Chemie International Edition 2019, 58 (20), 6688-6692. 22. Ferrara, C.; Patrini, M.; Pisanu, A.; Quadrelli, P.; Milanese, C.; Tealdi, C.; Malavasi, L., Wide band-gap tuning in Sn-based hybrid perovskites through cation replacement: the FA1−xMAxSnBr3 mixed system. Journal of Materials Chemistry A 2017, 5 (19), 9391-9395. 23. Gao, W.; Ran, C.; Li, J.; Dong, H.; Jiao, B.; Zhang, L.; Lan, X.; Hou, X.; Wu, Z., Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation. The Journal of Physical Chemistry Letters 2018, 9 (24), 6999-7006. 24. Ke, W.; Stoumpos, C. C.; Zhu, M.; Mao, L.; Spanopoulos, I.; Liu, J.; Kontsevoi, O. Y.; Chen, M.; Sarma, D.; Zhang, Y.; Wasielewski, M. R.; Kanatzidis, M. G., Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Science Advances 2017, 3 (8), e1701293. 25. Tsai, C.-M.; Lin, Y.-P.; Pola, M. K.; Narra, S.; Jokar, E.; Yang, Y.-W.; Diau, E. W.-G., Control of Crystal Structures and Optical Properties with Hybrid Formamidinium and 2-Hydroxyethylammonium Cations for Mesoscopic Carbon-Electrode Tin-Based Perovskite Solar Cells. ACS Energy Letters 2018, 3 (9), 2077-2085. 26. Kopacic, I.; Friesenbichler, B.; Hoefler, S. F.; Kunert, B.; Plank, H.; Rath, T.; Trimmel, G., Enhanced Performance of Germanium Halide Perovskite Solar Cells through Compositional Engineering. ACS Applied Energy Materials 2018, 1 (2), 343-347. 27. Ito, N.; Kamarudin, M. A.; Hirotani, D.; Zhang, Y.; Shen, Q.; Ogomi, Y.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S., Mixed Sn–Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. The Journal of Physical Chemistry Letters 2018, 9 (7), 1682-1688. 28. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494. 29. Sabba, D.; Mulmudi, H. K.; Prabhakar, R. R.; Krishnamoorthy, T.; Baikie, T.; Boix, P. P.; Mhaisalkar, S.; Mathews, N., Impact of Anionic Br– Substitution on Open Circuit Voltage in Lead Free Perovskite (CsSnI3-xBrx) Solar Cells. The Journal of Physical Chemistry C 2015, 119 (4), 1763-1767. 30. Tsai, C.-M.; Mohanta, N.; Wang, C.-Y.; Lin, Y.-P.; Yang, Y.-W.; Wang, C.-L.; Hung, C.-H.; Diau, E. W.-G., Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells. Angewandte Chemie International Edition 2017, 56 (44), 13819-13823. 31. Yu, B.-B.; Liao, M.; Zhu, Y.; Zhang, X.; Du, Z.; Jin, Z.; Liu, D.; Wang, Y.; Gatti, T.; Ageev, O.; He, Z., Oriented Crystallization of Mixed-Cation Tin Halides for Highly Efficient and Stable Lead-Free Perovskite Solar Cells. Advanced Functional Materials 2020, 30 (24), 2002230. 32. Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G., All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485 (7399), 486-489. 33. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N., Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials 2014, 26 (41), 7122-7127. 34. Marshall, K. P.; Walton, R. I.; Hatton, R. A., Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. Journal of Materials Chemistry A 2015, 3 (21), 11631-11640. 35. Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R.-G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials 2016, 28 (42), 9333-9340. 36. Xiao, M.; Gu, S.; Zhu, P.; Tang, M.; Zhu, W.; Lin, R.; Chen, C.; Xu, W.; Yu, T.; Zhu, J., Tin-Based Perovskite with Improved Coverage and Crystallinity through Tin-Fluoride-Assisted Heterogeneous Nucleation. Advanced Optical Materials 2018, 6 (1), 1700615. 37. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977. 38. Zhu, Z.; Chueh, C.-C.; Li, N.; Mao, C.; Jen, A. K.-Y., Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Advanced Materials 2018, 30 (6), 1703800. 39. Jokar, E.; Chien, C.-H.; Fathi, A.; Rameez, M.; Chang, Y.-H.; Diau, E. W.-G., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy & Environmental Science 2018, 11 (9), 2353-2362. 40. Li, W.; Li, J.; Li, J.; Fan, J.; Mai, Y.; Wang, L., Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. Journal of Materials Chemistry A 2016, 4 (43), 17104-17110. 41. Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P. H.; Kanatzidis, M. G., Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (35), 11445-11452. 42. Liu, X.; Yan, K.; Tan, D.; Liang, X.; Zhang, H.; Huang, W., Solvent Engineering Improves Efficiency of Lead-Free Tin-Based Hybrid Perovskite Solar Cells beyond 9%. ACS Energy Letters 2018, 3 (11), 2701-2707. 43. Liu, J.; Ozaki, M.; Yakumaru, S.; Handa, T.; Nishikubo, R.; Kanemitsu, Y.; Saeki, A.; Murata, Y.; Murdey, R.; Wakamiya, A., Lead-Free Solar Cells based on Tin Halide Perovskite Films with High Coverage and Improved Aggregation. Angewandte Chemie International Edition 2018, 57 (40), 13221-13225. 44. Hoegl, H., On Photoelectric Effects in Polymers and Their Sensitization by Dopants1. The Journal of Physical Chemistry 1965, 69 (3), 755-766. 45. Ambrosio, F.; Martsinovich, N.; Troisi, A., What Is the Best Anchoring Group for a Dye in a Dye-Sensitized Solar Cell? The Journal of Physical Chemistry Letters 2012, 3 (11), 1531-1535. 46. Magomedov, A.; Al-Ashouri, A.; Kasparavičius, E.; Strazdaite, S.; Niaura, G.; Jošt, M.; Malinauskas, T.; Albrecht, S.; Getautis, V., Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (32), 1801892. 47. Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E.; Levcenco, S.; Gil-Escrig, L.; Hages, C. J.; Schlatmann, R.; Rech, B.; Malinauskas, T.; Unold, T.; Kaufmann, C. A.; Korte, L.; Niaura, G.; Getautis, V.; Albrecht, S., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy & Environmental Science 2019, 12 (11), 3356-3369.
|