跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 04:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李孟諭
研究生(外文):Li, Meng-Yu
論文名稱:利用二步沈積法於反式平面錫鈣鈦礦太陽能電池之應用
論文名稱(外文):Applications of inverted planar tin perovskite solar cells according to a Two-step fabrication approach
指導教授:曾建銘曾建銘引用關係
指導教授(外文):Tseng, Chien-Ming
口試委員:曾建銘刁維光洪政雄
口試委員(外文):Tseng, Chien-MingDiau, Wei-GuangHung, Chen-Hsiung
口試日期:2021-09-10
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:108
中文關鍵詞:兩步法鈣鈦礦自組裝異丙醇六氟異丙醇
外文關鍵詞:two stepperovskiteIPAHFPSAM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用兩步沈積法和溶劑工程,製作穩定的錫基鈣鈦礦-FASnI3,應用於無鉛光伏打太陽能電池。第一步是用DMSO溶劑沈積SnI2層,第二步是應用共溶劑系統,含有六氟-2-丙醇 (HFP)、異丙醇 (IPA)、和氯苯 (CB) 以 5:5:2 的比例沉積FAI。傳統的 IPA 溶劑因為對SnI2有著強作用力,導致無法形成FASnI3鈣鈦礦層,因此我們使用 HFP分別和IPA與FAI形成氫鍵作用力,藉以延緩 FASnI3 的晶體生長,後續將兩步法所製作的鈣鈦礦,應用在不同的工程上,我將它們分為以下三個部分:
首先分別添加EDAP2、EDAI2將效率由4.9%分別提升至6.8%、8.35%。
後續搭配溶劑退火,透過改善結晶性度與薄膜型貌,有效將效率進一步提升至8.82%。
最後是兩步法所製作的鈣鈦礦應用到界面工-單層分子自組裝,透過對於ITO做不同溫度的加熱,造成濕潤性的不同,成功的將SAM應用於錫鈣鈦礦上,其效率最佳為6.5%,其中電流有效提升至21 mA cm2-。
Applying a two-step procedure and solvent engineering, we fabricated a stable tin-based perovskite, formamidinium tin triiodide (FASnI3), solar cells for lead-free photovoltaic applications. The first step was deposition of a SnI2 layer with the solvent dimethyl sulfoxide; the second step was application of a cosolvent system containing hexafluoro-2-propanol (HFP), isopropyl alcohol (IPA), and chlorobenzene (CB) in a 5:5:2 ratio to deposit the FAI layer on the SnI2 layer. The traditional IPA solvent prevented the formation of a stable FASnI3 layer such that a stable device could not be fabricated. HFP was hence used to form hydrogen bonds with IPA and FAI to retard the crystal growth of FASnI3. Subsequently, the perovskite produced by the two-step method will be applied to different projects. We divided them into three parts.
First, we add EDAP2 and EDAI2 to increase the efficiency from 4.9% to 6.8% and 8.35% respectively.
For the second part, solvent-annealing was introduced into FASnI3-EDAI2. By improving the crystallinity and film morphology, the efficiency is further increased to 8.82%.
Last part, we applied the perovskite fabricated by the two-step method to the interfacial engineering-Self-Assembled Monolayers. By heating ITO at different temperatures, caused the different wettability. And the SAM was successfully applied to tin perovskite by two step method. The maximum efficiency was 6.5%, and especially the current was increased to 21 mA cm2-.
摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xvi
第1章 緒論 1
第2章 文獻回顧 3
2-1 鈣鈦礦結構介紹 3
2-2 鈣鈦礦電池的運作 5
2-3 鈣鈦礦電池的元件結構 6
2-4 如何製作鈣鈦礦薄膜 7
(1)一步旋塗法 (one-step method) 7
(2)兩步沉積法 (two-step sequential method) 8
(3)真空條件下的全氣相沉積法(All vapour deposition method in vacuum conditions) 15
(4)蒸氣輔助溶液處理方法 (Vapour-assisted solution processing method) 16
(5)有機陽離子交換法(organic cation-exchange approach) 17
2-5 ASnX3鈣鈦礦太陽能電池的製作工程 18
(1)吸收組成工程 (Absorber Composition Engineering) 18
(2)添加物工程 (Additive Engineering) 24
(3)溶劑工程 (Solvent Engineering) 28
2-6錫鈣鈦礦電池當發展所面臨的困難 30
第3章 實驗步驟與量測方法 33
3-1實驗藥品及儀器 33
3-2 實驗步驟 37
3-2-1 導電玻璃ITO的蝕刻與清洗 37
3-2-2 有機陽離子合成 37
3-2-3 鈣鈦礦溶液配置 38
3-2-4 紫外光ozone 38
3-2-5 電洞傳輸層 PEDOT:PSS 38
3-2-6 沈積鈣鈦礦薄膜 38
3-2-7 沉積電子傳輸層 C60 39
3-2-8 沉積電洞阻擋層 Bathocuproine,BCP 39
3-2-9 沉積銀電極 Ag 39
3-3鈣鈦礦太陽能電池元件量測 40
3-3-1 光電轉換效率量測 41
3-3-2 外部量子效率量測 44
第4章 結果與討論 45
4-1 研究動機 45
4-2 溶劑對的選擇 46
4-3 碘化錫的濃度 48
4-4 FAI的濃度 52
4-5 FASnI3的形成 55
4-6 證實溶劑對的化學作用 56
4-7 不同靜置時間對FASnI3薄膜的影響 58
4-8 添加金屬陽離子 61
4-9 鈣鈦礦之深入探討:XPS、PL、TCSPC 64
4-10 探討元件的PV 66
4-11 穩定性測量 72
4-12 鈣鈦礦的後處理-solvent annealing 74
4-13 Solvent Annealing之深入探討 76
4-14 Solvent Annealing 之PV圖 79
4-15 Solvent Annealing之穩定性測量 83
4-16 結論 84
第5章 Self-Assembled Monolayers 85
5-1 研究動機 85
5-2 Self-Assembled Monolayers的介紹 86
5-3 Self-Assembled Monolayers- MeO-2PACz 88
5-4 如何製作Self-Assembled Monolayers 89
5-5 溫度對於ITO之影響 91
5-6 探討鈣鈦礦沈積於SAM之形貌變化 92
5-7 探討ITO在不同加熱溫度下的電荷再結合現象 95
5-8 探討SAM元件之PV 參數 97
5-9 元件遲滯效應測試 100
5-10 元件之再現性與穩定性測量 101
5-11 結論 103
參考資料 104
1. Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grätzel, M.; Park, N.-G., Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports 2012, 2 (1), 591.
2. Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J., Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643-647.
3. Jeng, J. Y.; Chiang, Y. F.; Lee, M. H.; Peng, S. R.; Guo, T. F.; Chen, P.; Wen, T. C., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater 2013, 25 (27), 3727-32.
4. Xiao, M.; Huang, F.; Huang, W.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y. B.; Spiccia, L., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew Chem Int Ed Engl 2014, 53 (37), 9898-903.
5. Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M., Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499 (7458), 316-319.
6. Im, J.-H.; Jang, I.-H.; Pellet, N.; Grätzel, M.; Park, N.-G., Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nature Nanotechnology 2014, 9 (11), 927-932.
7. Yang, S.; Zheng, Y. C.; Hou, Y.; Chen, X.; Chen, Y.; Wang, Y.; Zhao, H.; Yang, H. G., Formation Mechanism of Freestanding CH3NH3PbI3 Functional Crystals: In Situ Transformation vs Dissolution–Crystallization. Chemistry of Materials 2014, 26 (23), 6705-6710.
8. Xiao, Z.; Bi, C.; Shao, Y.; Dong, Q.; Wang, Q.; Yuan, Y.; Wang, C.; Gao, Y.; Huang, J., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science 2014, 7 (8), 2619-2623.
9. Zhang, H.; Mao, J.; He, H.; Zhang, D.; Zhu, H. L.; Xie, F.; Wong, K. S.; Grätzel, M.; Choy, W. C. H., A Smooth CH3NH3PbI3 Film via a New Approach for Forming the PbI2 Nanostructure Together with Strategically High CH3NH3I Concentration for High Efficient Planar-Heterojunction Solar Cells. Advanced Energy Materials 2015, 5 (23), 1501354.
10. Liu, T.; Hu, Q.; Wu, J.; Chen, K.; Zhao, L.; Liu, F.; Wang, C.; Lu, H.; Jia, S.; Russell, T.; Zhu, R.; Gong, Q., Mesoporous PbI2 Scaffold for High-Performance Planar Heterojunction Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (3), 1501890.
11. Cheng, N.; Liu, P.; Bai, S.; Yu, Z.; Liu, W.; Guo, S.-S.; Zhao, X.-Z., Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2 film by solvent treatment. Journal of Power Sources 2016, 319, 111-115.
12. Xie, Y.; Shao, F.; Wang, Y.; Xu, T.; Wang, D.; Huang, F., Enhanced Performance of Perovskite CH3NH3PbI3 Solar Cell by Using CH3NH3I as Additive in Sequential Deposition. ACS Applied Materials & Interfaces 2015, 7 (23), 12937-12942.
13. Liu, J.; Shirai, Y.; Yang, X.; Yue, Y.; Chen, W.; Wu, Y.; Islam, A.; Han, L., High-Quality Mixed-Organic-Cation Perovskites from a Phase-Pure Non-stoichiometric Intermediate (FAI)1−x-PbI2 for Solar Cells. Advanced Materials 2015, 27 (33), 4918-4923.
14. Yang, S.; Chen, Y.; Zheng, Y. C.; Chen, X.; Hou, Y.; Yang, H. G., Formation of high-quality perovskite thin film for planar heterojunction solar cells. RSC Advances 2015, 5 (85), 69502-69508.
15. Mao, P.; Zhou, Q.; Jin, Z.; Li, H.; Wang, J., Efficiency-Enhanced Planar Perovskite Solar Cells via an Isopropanol/Ethanol Mixed Solvent Process. ACS Applied Materials & Interfaces 2016, 8 (36), 23837-23843.
16. Liu, M.; Johnston, M. B.; Snaith, H. J., Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398.
17. Yu, Y.; Zhao, D.; Grice, C. R.; Meng, W.; Wang, C.; Liao, W.; Cimaroli, A. J.; Zhang, H.; Zhu, K.; Yan, Y., Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances 2016, 6 (93), 90248-90254.
18. Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H.-S.; Wang, H.-H.; Liu, Y.; Li, G.; Yang, Y., Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. Journal of the American Chemical Society 2014, 136 (2), 622-625.
19. Zhu, P.; Chen, C.; Gu, S.; Lin, R.; Zhu, J., CsSnI3 Solar Cells via an Evaporation-Assisted Solution Method. Solar RRL 2018, 2 (4), 1700224.
20. Ran, C.; Xi, J.; Gao, W.; Yuan, F.; Lei, T.; Jiao, B.; Hou, X.; Wu, Z., Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells. ACS Energy Letters 2018, 3 (3), 713-721.
21. Li, F.; Zhang, C.; Huang, J.-H.; Fan, H.; Wang, H.; Wang, P.; Zhan, C.; Liu, C.-M.; Li, X.; Yang, L.-M.; Song, Y.; Jiang, K.-J., A Cation-Exchange Approach for the Fabrication of Efficient Methylammonium Tin Iodide Perovskite Solar Cells. Angewandte Chemie International Edition 2019, 58 (20), 6688-6692.
22. Ferrara, C.; Patrini, M.; Pisanu, A.; Quadrelli, P.; Milanese, C.; Tealdi, C.; Malavasi, L., Wide band-gap tuning in Sn-based hybrid perovskites through cation replacement: the FA1−xMAxSnBr3 mixed system. Journal of Materials Chemistry A 2017, 5 (19), 9391-9395.
23. Gao, W.; Ran, C.; Li, J.; Dong, H.; Jiao, B.; Zhang, L.; Lan, X.; Hou, X.; Wu, Z., Robust Stability of Efficient Lead-Free Formamidinium Tin Iodide Perovskite Solar Cells Realized by Structural Regulation. The Journal of Physical Chemistry Letters 2018, 9 (24), 6999-7006.
24. Ke, W.; Stoumpos, C. C.; Zhu, M.; Mao, L.; Spanopoulos, I.; Liu, J.; Kontsevoi, O. Y.; Chen, M.; Sarma, D.; Zhang, Y.; Wasielewski, M. R.; Kanatzidis, M. G., Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Science Advances 2017, 3 (8), e1701293.
25. Tsai, C.-M.; Lin, Y.-P.; Pola, M. K.; Narra, S.; Jokar, E.; Yang, Y.-W.; Diau, E. W.-G., Control of Crystal Structures and Optical Properties with Hybrid Formamidinium and 2-Hydroxyethylammonium Cations for Mesoscopic Carbon-Electrode Tin-Based Perovskite Solar Cells. ACS Energy Letters 2018, 3 (9), 2077-2085.
26. Kopacic, I.; Friesenbichler, B.; Hoefler, S. F.; Kunert, B.; Plank, H.; Rath, T.; Trimmel, G., Enhanced Performance of Germanium Halide Perovskite Solar Cells through Compositional Engineering. ACS Applied Energy Materials 2018, 1 (2), 343-347.
27. Ito, N.; Kamarudin, M. A.; Hirotani, D.; Zhang, Y.; Shen, Q.; Ogomi, Y.; Iikubo, S.; Minemoto, T.; Yoshino, K.; Hayase, S., Mixed Sn–Ge Perovskite for Enhanced Perovskite Solar Cell Performance in Air. The Journal of Physical Chemistry Letters 2018, 9 (7), 1682-1688.
28. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells. Nature Photonics 2014, 8 (6), 489-494.
29. Sabba, D.; Mulmudi, H. K.; Prabhakar, R. R.; Krishnamoorthy, T.; Baikie, T.; Boix, P. P.; Mhaisalkar, S.; Mathews, N., Impact of Anionic Br– Substitution on Open Circuit Voltage in Lead Free Perovskite (CsSnI3-xBrx) Solar Cells. The Journal of Physical Chemistry C 2015, 119 (4), 1763-1767.
30. Tsai, C.-M.; Mohanta, N.; Wang, C.-Y.; Lin, Y.-P.; Yang, Y.-W.; Wang, C.-L.; Hung, C.-H.; Diau, E. W.-G., Formation of Stable Tin Perovskites Co-crystallized with Three Halides for Carbon-Based Mesoscopic Lead-Free Perovskite Solar Cells. Angewandte Chemie International Edition 2017, 56 (44), 13819-13823.
31. Yu, B.-B.; Liao, M.; Zhu, Y.; Zhang, X.; Du, Z.; Jin, Z.; Liu, D.; Wang, Y.; Gatti, T.; Ageev, O.; He, Z., Oriented Crystallization of Mixed-Cation Tin Halides for Highly Efficient and Stable Lead-Free Perovskite Solar Cells. Advanced Functional Materials 2020, 30 (24), 2002230.
32. Chung, I.; Lee, B.; He, J.; Chang, R. P. H.; Kanatzidis, M. G., All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485 (7399), 486-489.
33. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N., Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials 2014, 26 (41), 7122-7127.
34. Marshall, K. P.; Walton, R. I.; Hatton, R. A., Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices. Journal of Materials Chemistry A 2015, 3 (21), 11631-11640.
35. Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R.-G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials 2016, 28 (42), 9333-9340.
36. Xiao, M.; Gu, S.; Zhu, P.; Tang, M.; Zhu, W.; Lin, R.; Chen, C.; Xu, W.; Yu, T.; Zhu, J., Tin-Based Perovskite with Improved Coverage and Crystallinity through Tin-Fluoride-Assisted Heterogeneous Nucleation. Advanced Optical Materials 2018, 6 (1), 1700615.
37. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977.
38. Zhu, Z.; Chueh, C.-C.; Li, N.; Mao, C.; Jen, A. K.-Y., Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Advanced Materials 2018, 30 (6), 1703800.
39. Jokar, E.; Chien, C.-H.; Fathi, A.; Rameez, M.; Chang, Y.-H.; Diau, E. W.-G., Slow surface passivation and crystal relaxation with additives to improve device performance and durability for tin-based perovskite solar cells. Energy & Environmental Science 2018, 11 (9), 2353-2362.
40. Li, W.; Li, J.; Li, J.; Fan, J.; Mai, Y.; Wang, L., Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K. Journal of Materials Chemistry A 2016, 4 (43), 17104-17110.
41. Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P. H.; Kanatzidis, M. G., Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells. Journal of the American Chemical Society 2015, 137 (35), 11445-11452.
42. Liu, X.; Yan, K.; Tan, D.; Liang, X.; Zhang, H.; Huang, W., Solvent Engineering Improves Efficiency of Lead-Free Tin-Based Hybrid Perovskite Solar Cells beyond 9%. ACS Energy Letters 2018, 3 (11), 2701-2707.
43. Liu, J.; Ozaki, M.; Yakumaru, S.; Handa, T.; Nishikubo, R.; Kanemitsu, Y.; Saeki, A.; Murata, Y.; Murdey, R.; Wakamiya, A., Lead-Free Solar Cells based on Tin Halide Perovskite Films with High Coverage and Improved Aggregation. Angewandte Chemie International Edition 2018, 57 (40), 13221-13225.
44. Hoegl, H., On Photoelectric Effects in Polymers and Their Sensitization by Dopants1. The Journal of Physical Chemistry 1965, 69 (3), 755-766.
45. Ambrosio, F.; Martsinovich, N.; Troisi, A., What Is the Best Anchoring Group for a Dye in a Dye-Sensitized Solar Cell? The Journal of Physical Chemistry Letters 2012, 3 (11), 1531-1535.
46. Magomedov, A.; Al-Ashouri, A.; Kasparavičius, E.; Strazdaite, S.; Niaura, G.; Jošt, M.; Malinauskas, T.; Albrecht, S.; Getautis, V., Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (32), 1801892.
47. Al-Ashouri, A.; Magomedov, A.; Roß, M.; Jošt, M.; Talaikis, M.; Chistiakova, G.; Bertram, T.; Márquez, J. A.; Köhnen, E.; Kasparavičius, E.; Levcenco, S.; Gil-Escrig, L.; Hages, C. J.; Schlatmann, R.; Rech, B.; Malinauskas, T.; Unold, T.; Kaufmann, C. A.; Korte, L.; Niaura, G.; Getautis, V.; Albrecht, S., Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy & Environmental Science 2019, 12 (11), 3356-3369.
電子全文 電子全文(網際網路公開日期:20240927)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊