跳到主要內容

臺灣博碩士論文加值系統

(44.211.239.1) 您好!臺灣時間:2023/01/31 04:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃馨逸
研究生(外文):Huang, Hsin-Yi
論文名稱:杯芳烴及BODIPY修飾之[2]輪烷及其酸鹼可控之穿梭性與磷酸二氫陰離子之檢測
論文名稱(外文):Calix[4]arene and BODIPY Functionalized [2]Rotaxane and Study of its Acid/Base Shuttling Motion and Detection of Dihydrogen Phosphate Anion
指導教授:鍾文聖
指導教授(外文):Chung, Wen-Sheng
口試委員:鄭彥如孫世勝
口試委員(外文):Cheng, Yen-JuSun, Shih-Sheng
口試日期:2021-10-28
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:172
中文關鍵詞:[2]輪烷分子運動氟硼二吡咯點擊化學聚集導致螢光焠滅Job’s plotH2PO4–離子傳感器
外文關鍵詞:[2]rotaxanemolecular motionBODIPYclick reactionaggregation-caused quenchingJob’s plotH2PO4– ion sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
單一功能材料的發展已非常普遍,而多功能化刺激響應性材料豐富的應用前景將成為未來發展的趨勢,但設計並控制複雜的分子排列仍是一項極其困難的工作。本文成功利用兩次點擊化學反應合成之含芳杯冠醚大環、三唑鎓基團及氟硼二吡咯多官能基之啞鈴型化合物T1、T2與[2]輪烷分子R1、R2。我們發現化合物T2及R2對H2PO4−離子具高選擇性,且透過Job’s plot計算出T2與R2和H2PO4–離子以1:1 (或者2:2)比例錯合,其中T2的錯合常數為3700 M1。為研究BODIPY聚集的螢光性質,我們將化合物溶解於乙腈與水的混和溶劑中,當水的比例分別達到90%、70%和80%時,化合物T1、R1與R2會因分子間的π-π堆疊表現出螢光淬熄。
透過核磁共振光譜與2D-ROESY及高解析質譜等技術可明確提供[2]輪烷生成之證據,雖然引入芳杯冠醚大環的[2]輪烷R2-b無法如預期從管柱中純化得到,但此複雜系統仍可透過酸鹼的調控,驅動芳杯冠醚大環在二級銨鹽與三唑鎓基團兩個車站之間往返。
The evolution of materials changes with each passing day, and rich application prospects of multi-functional stimuli-responsive materials would be the future trends. However, it is still extremely difficult to design and control the packing arrangement of these complex molecules. In this thesis, dumbbell-shaped molecules (T1 and T2) and [2]rotaxanes (R1 and R2) containing t-butylcalix[4]arene macrocycle, triazolium groups, and BODIPY groups were designed and synthesized with multiple components by double click reaction. We found compounds, T2 and R2 could show high selectivity to H2PO4− ions and the complexation ratio was determined by Job’s plot to be 1:1 (or 2:2) for both compounds and the Ka of T2 is 3700 M-1. Further studies of fluorescent properties of BODIPY in its aggregation state were carried out by dissolving these compounds in co-solvent of acetonitrile and water. When water fraction was increased to 90%, 70%, and 80% the fluorescence of compounds T1, R1, and R2 were quenched which could be due to intermolecular π-π stacking interactions.
1H NMR, 2D-ROESY and high-resolution mass spectrometry were used to confirm the formation of [2]rotaxanes R1 and R2. Although [2]rotaxane R2-b could not be purified by column chromtagrophy as we hope, the reversible shuttling motion of the t-butylcalix[4]calixarene macrocycle along the axle between two stations (R2NH2+ and triazolium groups) can be driven by adding acid and base.
中文摘要 i
Abstract iv
目錄 vii
圖目錄 ix
式圖目錄 xiii
附圖目錄 xiv
目標分子結構對照表 xvii

第一章 緒論 1
1.1 超分子化學簡介 1
1.2 機械互鎖分子 2
1.3 輪烷分子合成 4
1.4 點擊化學 5
1.4.1 銅催化疊氮炔環加成反應 6
1.5 分子梭 (molecular shuttle) 7
1.6 氟硼二吡咯(BODIPY)螢光團的特性及應用 11
1.6.1 BODIPY應用於輪烷之相關文獻 13
1.7 聚集誘導發光性質 17
1.7.1 聚集誘導發光應用於輪烷之相關文獻 18

第二章 研究動機 21

第三章 結果與討論 23
3.1 含氟硼二吡咯輪烷之合成策略 23
3.1.1 目標分子R4與對照分子R2之逆合成分析 23
3.1.2 合成路徑探討 27
3.2 化合物T1、T2、R1、R2及R2-b之1H NMR光譜與結構鑑定 40
3.2.1啞鈴型分子T1與T2之氫譜訊號標定 40
3.2.2 [2]輪烷R1與R2之氫譜訊號標定 45
3.3 螢光性質探討 61
3.3.1 化合物T1、T2、R1與R2對H2PO4–離子之選擇性 62
3.3.2 化合物T1、T2、R1與R2之BODIPY Aggregation測試 72
3.4 化合物T2與R2對H2PO4–離子錯合比例之測定 81

第四章 結論 90

第五章 實驗步驟 92
5.1試藥及測試方法 92
5.2實驗合成步驟及光譜資料 93

第六章 參考文獻 111

附圖 117
1. Mattia, E.; Otto, S. Nat. Nanotechnol. 2015, 10, 111-119.
2. Huang, F.; Anslyn, E. V. Chem. Rev. 2015, 115, 6999-7000.
3. Goodman, M. F. Proc. Natl. Acad. Sci. USA 1997, 94, 10493-10495.
4. Lehn, J. M. Eur. Rev. 2009, 17, 263-280.
5. Stoddart, J. F. Angew. Chem. Int. Ed. Engl. 2017, 56, 11094-11125.
6. Cram, D. J.; Cram, J. M. Science 1974, 183, 803-809.
7. Lehn, J. M. Angew. Chem. Int. Ed. Engl. 1988, 27, 89-112.
8. Pedersen, C. J. Angew. Chem. lnt. Ed. Engl. 1988, 27, 1021-1027.
9. Cram, D. J. Angew Chem. Int. Ed. Engl. 1988, 27, 1009-1020.
10. Balzani, V.; Gómez-López, M.; Stoddart, J. F. Acc. Chem. Res. 1998, 31, 405-414.
11. Koumura, N.; Zijlstra, R. W.; van Delden, R. A.; Harada, N.; Feringa, B. L. Nature 1999, 401, 152-155.
12. Browne, W. R.; Feringa, B. L., Nat. Nanotechnol. 2006, 1, 25-35.
13. Binauld, S.; Hawker, C. J.; Fleury, E.; Drockenmuller, E. Angew. Chem. Int. Ed. 2009, 48, 6654-6658.
14. Stanier, C. A.; Alderman, S. J.; Claridge, T. D. W.; Anderson, H. L. Angew. Chem. Int. Ed. Engl. 2002, 114, 1847-1850.
15. Bodine, K. D.; Gin, D. Y.; Gin, M. S. J. Am. Chem. Soc. 2004, 126, 1638-1639.
16. Rosenau, T.; Potthast, A.; Hofinger, A.; Kosma, P. Angew. Chem. Int. Ed. 2002, 41, 1171-1173.
17. Rodik, R. V.; Klymchenko, A. S.; Jain, N.; Miroshnichenko, S. I.; Richert, L.; Kalchenko, V. I.; Mely, Y. Chem. Eur. J. 2011, 17, 5526-5538.
18. Ogoshi, T.; Kakuta, T.; Yamagishi, T. A. Angew. Chem. Int. Ed. 2019, 58, 2197-2206.
19. Fujita, M.; Ibukuro, F.; Seki, H.; Kamo, O.; Imanari, M.; Ogura, K. J. Am. Chem. Soc. 1996, 118, 899-900.
20. Xue, M.; Yang, Y.; Chi, X.; Yan, X.; Huang, F. Chem. Rev. 2015, 115, 7398-7501.
21. Sluysmans, D.; Stoddart, J. F. Trends Chem. 2019, 1, 185-197.
22. Neal, E. A.; Goldup, S. M. Chem. Commun. 2014, 50, 5128-5142.
23. Sauvage, J. P. Angew. Chem. Int. Ed. Engl. 2017, 56, 11080-11093.
24. Lewis, J. E. M.; Beer, P. D.; Loeb, S. J.; Goldup, S. M. Chem. Soc. Rev. 2017, 46, 2577-2591.
25. Olson, M. A.; Botros, Y. Y.; Stoddart, J. F. Pure Appl. Chem. 2010, 82, 1569-1574.
26. Griffiths, K. E.; Stoddart, J. F. Pure Appl. Chem. 2008, 80, 485-506.
27. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004-2021.
28. Breugst, M.; Reissig, H. U. Angew. Chem. Int. Ed. 2020, 59, 12293-12307.
29. Huisgen, R. Proc. Chem. Soc.London 1961, 357–369.
30. Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952-3015.
31. Hein, J. E.; Fokin, V. V., Chem. Soc. Rev. 2010, 39, 1302-1315.
32. Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057-3064.
33. Anelli, P. L.; Spencer, N.; Stoddart, J. F. J. Am. Chem. Soc. 1991, 113, 5131-5133.
34. Arumugaperumal, R.; Srinivasadesikan, V.; Ramakrishnam Raju, M. V.; Lin, M. C.; Shukla, T.; Singh, R.; Lin, H.-C. ACS Appl. Mater. Interfaces 2015, 7, 26491-26503.
35. Blanco, V.; Carlone, A.; Hanni, K. D.; Leigh, D. A.; Lewandowski, B. Angew. Chem. Int. Ed. 2012, 51, 5166-5169.
36. Amano, S.; Fielden, S. D. P.; Leigh, D. A. Nature 2021, 594, 529-534.
37. Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891-4932.
38. Zhen, W.; Wang, N. X.; Qi, X. J. Org. Chem. Res. 2017, 5, 21-33.
39. Li, L.; Nguyen, B.; Burgess, K. Bioorg. Med. Chem. Lett. 2008, 18, 3112-3116.
40. Treibs, A.; Kreuzer, F. H. Justus Liebigs Ann. Chem. 1968, 721: 116-120.
41. De Wael, E. V.; Pardoen, J. A.; Van Koeveringe, J. A.; Lugtenburg, J. Recl. Trav. Chim. Pays-Bas 1977, 96, 306-309.
42. Wories, H. J.; Koek, J. H.; Lodder, G.; Lugtenburg, J.; Fokkens, R.; Driessen, O.; Mohn, G. R. Recl. Trav. Chim. Pays-Bas 1985, 104, 288-291.
43. Li, F.; Yang, S. I.; Ciringh, Y.; Seth, J.; Martin, C. H.; Singh, D. L.; Kim, D.; Birge, R. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. J. Am. Chem. Soc. 1998, 120, 10001-10017.
44. Wu, Y.; Frasconi, M.; Liu, W. G.; Young, R. M.; Goddard, W. A.; Wasielewski, M. R.; Stoddart, J. F. J. Am. Chem. Soc. 2020, 142, 11835-11846.
45. Sun, N.; Xiao, X.; Li, W.; Jiang, J. Adv. Sci. 2015, 2, 1500082.
46. Yesilgul, N.; Seven, O.; Guliyev, R.; Akkaya, E. U. J. Org. Chem. 2018, 83, 13228-13232.
47. Birks, J. B. Photophysics of Aromatic Molecules; Wiley-VCH: New York, 1970.
48. Luo, J.; Xie, Z.; Lam, J. W.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. -Z. Chem. Commun. 2001, 18, 1740–1741.
49. Mei, J.; Hong, Y.; Lam, J. -W.; Qin, A.; Tang, Y.; Tang, B. -Z. Adv. Mater. 2014, 26, 5429-5479.
50. Leung, N. L.; Xie, N.; Yuan, W.; Liu, Y.; Wu, Q.; Peng, Q.; Miao, Q.; Lam, J. W. Y.; Tang, B. -Z. Chem. Eur. J. 2014, 20, 15349-15353.
51. Wang, H.; Zhao, E.; Lam, J. W.; Tang, B. Z. Mater. Today 2015, 18, 365-377.
52. Arumugaperumal, R.; Shellaiah, M.; Srinivasadesikan, V.; Awasthi, K.; Sun, K.-W.; Lin, M.-C.; Ohta, N.; Chung, W.-S. ACS Appl. Mater. Interfaces 2020, 12, 45222-45234.
53. Wang, S.; Ye, J.-H.; Han, Z.; Fan, Z.; Wang, C. J.; Mu, C.; Zhang, W. C.; He, W. J. RSC Adv. 2017, 7, 36021-36025.
54. Arumugaperumal, R.; Raghunath, P.; Lin, M. -C.; Chung, W. -S. Chem. Mater. 2018, 30, 7221-7233.
55. Arumugaperumal, R.; Hua, W.-L.; Raghunath, P.; Lin, M.-C.; Chung, W.-S. ACS Appl. Mater. Interfaces 2020, 12, 29650-29660.
56. Zhang, Z. J.; Zhang, H. Y.; Wang, H.; Liu, Y. Angew. Chem. Int. Ed. Engl. 2011, 123, 11026-11030.
57. Meng, G.; Zheng, M. L.; Wang, M. Org. Prep. Proced. Int. 2011, 43, 308-311.
58. Eçik, E. T.; Şenkuytu, E.; Cebesoy, Z.; Çiftçi, G. Y. RSC Adv. 2016, 6, 47600-47606.
59. Rothemund, P. J. Am. Chem. Soc. 1935, 57, 2010–2011.
60. Sreenath, K.; Clark, R. J.; Zhu, L. J. Org. Chem. 2012, 77, 8268-8279.
61. Larsen, K. R.; Johnsen, C.; Hammerich, O.; Jeppesen J. O., Org. Lett. 2013, 15, 1452-1455.
62. Miyaura, N.; Suzuki, A., Chem. Rev. 1995, 95, 2457-2483.
63. Zhang, X.; Chi, Z.; Li, H.; Xu, B.; Li, X.; Zhou, W.; Liu, S.; Zhang, Y.; Xu, J. Chem. Asian. J. 2011, 6, 808-811.
64. 蔣興宇,楊興龍。一種基於四苯乙烯的抗菌分子及其製備方法和應用。CN108101781A,2018。
65. Huang, G.-X.; Jiang, Y.-Q.; Wang, J. G.; Li, Z.; Li, B.-S.; Tang, B.-Z., J. Mater. Chem. C 2019, 7, 12709-12716.
66. Alonso, M., L.; Martinez, M. M.; Sarandeses, L. A.; Sestelo, J. P. Org. Biomol. Chem. 2015, 13, 379-387.
67. Settypalli, T.; Chunduri, V. R.; Maddineni, A. K.; Begari, N.; Allagadda, R.; Kotha, P.; Chippada, A. R. New J. Chem. 2019, 43, 15435-15452.
68. Sajna, K. V.; Kumara Swamy, K. C. J. Org. Chem. 2012, 77, 8712-8722.
69. Gutsche, C. D.; Iqbal, M. Org. Synth. 1990, 68, 234.
70. Cantrill, S. J.; Youn, G. J.; Stoddart, J. F.; Williams, D. J. J. Org. Chem. 2001, 66, 6857–6872.
71. Yamamoto, H.; Shinkai, S. Chem. Lett. 1994, 23, 1115-1118.
72. Bu, J.-H.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. Tetrahedron 2005, 61, 897-902.
73. Xu, Z.-X.; Zhang, C.; Zheng, Q.-Y.; Chen, C.-F.; Huang, Z.-T. Org. Lett. 2007, 9, 4447-4450.
74. Yu, G.; Zhang, Z.; Han, C.; Xue, M.; Zhou, Q.; Huang, F. Chem. Commum. 2012, 48, 2958-2960.
75. 陳宥誠,芘基-偶氮苯雙親性分子修飾之[2]輪烷及衍生物為架構之光響應超分子有機凝膠,國立交通大學碩士論文,2021。
76. Arumugaperumal, R.; Shellaiah, M.; Lai, Y. K.; Venkatesan, P.; Raghunath, P.; Wu, S. -P.; Lin, M. -C.; Sun, K. -W.; Chung, W. -S.; Lin, H. -C. J. Mater. Chem. C 2021, 9, 3215-3228.
77. 花瑋伶,以四苯乙烯-偶氮苯雙親分子衍生物為架構之光響應超分子有機凝膠,國立交通大學碩士論文,2019。
78. Descalzo, A. B.; Ashokkumar, P.; Shen, Z.; Rurack, K. Chem. Photo. Chem. 2019, 4, 120-131.
79. Zheng, C.; Zhong, C.; Collison, C. J.; Spano, F. C. J. Phys. Chem. C. 2019, 123, 3203-3215.
80. Oleson, A.; Zhu, T.; Dunn, I. S.; Bialas, D.; Bai, Y.; Zhang, W.; Dai, M.; Reichman, D. R.; Tempelaar, R.; Huang, L.; Spano, F. C. J. Phys. Chem. C. 2019, 123, 20567-20578.
81. Job, P. Ann. Chim. 1928, 9 ,113-203.
82. Renny, J. S.; Tomasevich, L. L.; Tallmadge, E. H.; Collum, D. B. Angew. Chem. Int. Ed. 2013, 52, 11998-12013.
83. Lyles, M. B.; Cameron, I. L. Biophys. Chem. 2002, 96, 53-76.
84. Benesi, H. A.; Hildebrand, J. H. J. J. Am. Chem. Soc. 1949, 71, 2703-2707.
電子全文 電子全文(網際網路公開日期:20241031)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top