跳到主要內容

臺灣博碩士論文加值系統

(44.213.63.130) 您好!臺灣時間:2023/02/01 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李欣如
研究生(外文):Li, Xin-Ru
論文名稱:鮑氏不動桿菌 ATCC 17978 脂質A之全合成與鑑定並監測醯鏈結構差異對其免疫學特性之影響
論文名稱(外文):Total Synthesis, Characterization, and Immunological Property of Penta, Hexa, and Hepta-acyl lipid A from Acinetobacter baumannii ATCC 17978
指導教授:蒙國光
指導教授(外文):Mong, Kwok-Kong
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:348
中文關鍵詞:鮑氏不動桿菌脂質A免疫
外文關鍵詞:Acinetobacter baumanniiLipid A
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
目錄 iii
流程目錄 v
表目錄 vii
圖目錄 viii
簡寫對照表 xiii
一、序論 1
1.1 抗藥性細菌於醫療之威脅 1
1.1.1 鮑氏不動桿菌 (Acinetobacter baumannii) 1
1.2 脂多醣 (lipopolysaccharide, LPS) 3
1.2.1 脂多醣之結構 4
1.2.2 脂質A於脂多醣之重要性 4
1.3 鮑氏不動桿菌脂質A之結構 6
1.3.1 β-羥基脂肪酸 (β-hydroxy fatty acid) 合成策略比較 10
1.3.2 脂質A (Lipid A) 全合成策略比較 18
1.4 研究動機 32
二、結果與討論 33
2.1 (R)-3-羥基脂肪酸製備 33
2.1.1 (R)-3-羥基脂肪酸逆合成分析 33
2.1.2 製備關鍵中間體 15a 及 15b 34
2.1.3 脂肪酸新策略應用於鮑氏不動桿菌脂質A前驅物 107 製備 43
2.2 鮑氏不動桿菌野生型菌株ATCC 17978之脂質A合成 50
2.2.1 鮑氏不動桿菌脂質A逆合成分析 50
2.2.2 脂質A之醣予體 (Donor) 製備 51
2.2.3 鮑氏不動桿菌脂質A之合成與鑑定 77
2.3 鮑氏不動桿菌 ATCC 17978 脂質A免疫學活性測試 108
2.3.1 鮑氏不動桿菌脂質A之免疫活性測試結果 109
2.3.2 免疫原性測試結果探討 112
三、結論 123
四、實驗 124
4.1 General Experimental 124
4.2 Experimental Section 125
4.2.1 Experimental procedure for fatty acid: 125
4.2.2 Experimental procedure for lipid A 136
五、參考文獻 197
六、附件 210
1. Cohen, J.; Cristofaro, P.; Carlet, J.; Opal, S., New method of classifying infections in critically ill patients*. Crit. Care Med., 2004, 32, 1510-1526.
2. Baumann, P., Isolation of Acinetobacter from Soil and Water. J. Bacteriol., 1968, 96, 39-42.
3. Vila, J.; Martí, S.; Sánchez-Céspedes, J., Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J. Antimicrob. Chemother., 2007, 59, 1210-1215.
4. Espinal, P.; Martí, S.; Vila, J., Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J. Hosp. Infect., 2012, 80, 56-60.
5. Houang, E. T.; Sormunen, R. T.; Lai, L.; Chan, C. Y.; Leong, A. S., Effect of desiccation on the ultrastructural appearances of Acinetobacter baumannii and Acinetobacter lwoffii. J. Clin. Pathol., 1998, 51, 786-788.
6. Garnacho-Montero, J.; Ortiz-Leyba, C.; Fernández-Hinojosa, E.; Aldabó-Pallás, T.; Cayuela, A.; Marquez-Vácaro, J. A.; Garcia-Curiel, A.; Jiménez-Jiménez, F. J., Acinetobacter baumannii ventilator-associated pneumonia: epidemiological and clinical findings. Intensive Care Med., 2005, 31, 649-655.
7. Krol, V.; Hamid, N. S.; Cunha, B. A., Neurosurgically related nosocomial Acinetobacter baumannii meningitis: report of two cases and literature review. J. Hosp. Infect., 2009, 71, 176-180.
8. Laganà, P.; Melcarne, L.; Delia, S., Acinetobacter baumannii and endocarditis, rare complication but important clinical relevance. Int. J. Cardiol., 2015, 187, 678-679.
9. Zhang, W.; Wu, Y.-G.; Qi, X.-M.; Dai, H.; Lu, W.; Zhao, M., Peritoneal Dialysis–Related Peritonitis with Acinetobacter Baumannii: A Review of Seven Cases. Perit. Dial. Int., 2014, 34, 317-321.
10. Pour, N. K.; Dusane, D. H.; Dhakephalkar, P. K.; Zamin, F. R.; Zinjarde, S. S.; Chopade, B. A., Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Microbiol. Immunol., 2011, 62, 328-338.
11. Beck-SaguĖ, C. M.; Jarvis, W. R.; Brook, J. H.; Culver, D. H.; Potts, A.; Gay, E.; Shotts, B. W.; Hill, B.; Anderson, R. L.; Weinstein, M. P., EPIDEMIC BACTEREMIA DUE TO ACINETOBACTER BAUMANNII IN FIVE INTENSIVE CARE UNITS. Am. J. Epidemiol., 1990, 132, 723-733.
12. Domalaon, R.; Idowu, T.; Zhanel George, G.; Schweizer, F., Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin. Microbiol. Rev., 2018, 31, e00077-17.
13. Poole, K., Outer Membranes and Efflux: The Path to Multidrug Resistance in Gram- Negative Bacteria. Curr. Pharm. Biotechnol., 2002, 3, 77-98.
14. Kyriakidis, I.; Vasileiou, E.; Pana, Z. D.; Tragiannidis, A., Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens, 2021, 10.
15. Pfeiffer, R., Untersuchungen über das Choleragift. Z. Hyg. Infektionskr., 1892, 11, 393-412.
16. Boivin, A.; Mesrobeanu, L., Recherches sur les antigenes somatiques et sur les endotoxines des bacteries. I. Considerations generales et expose des techniques utilisees. Rev. immunol, 1935, 1, 553-569.
17. Morgan, W. T. J., Studies in immuno-chemistry: The isolation and properties of a specific antigenic substance from B. dysenteriae (Shiga). Biochem. J., 1937, 31, 2003-2021.
18. Goebel, W. F.; Binkley, F.; Perlman, E., STUDIES ON THE FLEXNER GROUP OF DYSENTERY BACILLI : I. THE SPECIFIC ANTIGENS OF SHIGELLA PARADYSENTERIAE (FLEXNER). J. Exp. Med., 1945, 81, 315-330.
19. Sondhi, P.; Maruf, M. H.; Stine, K. J., Nanomaterials for Biosensing Lipopolysaccharide. Biosensors, 2020, 10.
20. Westphal, O.; Lüderitz, O., Chemische erforschung von lipopolysacchariden gramnegativer bakterien. Angew. Chem., 1954, 66, 407-417.
21. Kim, H. M.; Park, B. S.; Kim, J.-I.; Kim, S. E.; Lee, J.; Oh, S. C.; Enkhbayar, P.; Matsushima, N.; Lee, H.; Yoo, O. J.; Lee, J.-O., Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran. Cell, 2007, 130, 906-917.
22. Kawai, T.; Akira, S., The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11, 373-384.
23. Rietschel, E. T.; Kirikae, T.; Schade, F. U.; Ulmer, A. J.; Holst, O.; Brade, H.; Schmidt, G.; Mamat, U.; Grimmecke, H.-D.; Kusumoto, S.; Zähringer, U., The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology, 1993, 187, 169-190.
24. Miyake, K., Invited review: Roles for accessory molecules in microbial recognition by Toll-like receptors. J. Endotoxin Res., 2006, 12, 195-204.
25. Park, B. S.; Song, D. H.; Kim, H. M.; Choi, B.-S.; Lee, H.; Lee, J.-O., The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature, 2009, 458, 1191-1195.
26. Antunes, L. C. S.; Imperi, F.; Carattoli, A.; Visca, P., Deciphering the Multifactorial Nature of Acinetobacter baumannii Pathogenicity. PLOS ONE, 2011, 6, e22674.
27. Piechaud, M.; Second, L. In Studies of 26 strains of Moraxella Iwoffi, Ann. Inst. Pasteur. (Paris), 1951, 97-99.
28. Kröger, C.; MacKenzie, K. D.; Alshabib, E. Y.; Kirzinger, M. W B.; Suchan, D. M.; Chao, T.-C.; Akulova, V.; Miranda-CasoLuengo, A. A.; Monzon, V. A.; Conway, T.; Sivasankaran, S. K.; Hinton, J. C D.; Hokamp, K.; Cameron, Andrew D S., The primary transcriptome, small RNAs and regulation of antimicrobial resistance in Acinetobacter baumannii ATCC 17978. Nucleic Acids Res. 2018, 46, 9684-9698.
29. Galanos, C.; LÜDeritz, O.; Freudenberg, M.; Brade, L.; Schade, U.; Rietschel, E. T.; Kusumoto, S.; Shiba, T., Biological activity of synthetic heptaacyl lipid A representing a component of Salmonella minnesota R595 lipid A. Eur. J. Biochem., 1986, 160, 55-59.
30. Kawasaki, K.; Ernst, R. K.; Miller, S. I., 3-O-Deacylation of Lipid A by PagL, a PhoP/PhoQ-regulated Deacylase of Salmonella typhimurium, Modulates Signaling through Toll-like Receptor 4*. J. Biol. Chem., 2004, 279, 20044-20048.
31. Tsukioka, D.; Nishizawa, T.; Miyase, T.; Achiwa, K.; Suda, T.; Soma, G.-I.; Mizuno, D. i., Structural characterization of lipid A obtained from Pantoea agglomerans lipopolysaccharide. FEMS Microbiol. Lett., 1997, 149, 239-244.
32. Zhang, Y.; Gaekwad, J.; Wolfert, M. A.; Boons, G.-J., Modulation of Innate Immune Responses with Synthetic Lipid A Derivatives. J. Am. Chem. Soc., 2007, 12, 5200-5216.
33. 陳巧文. 醣之還原醚化新方法開發以及應用和鮑氏不動桿菌脂多醣A全合成. 國立交通大學, 2020.
34. Ren, Q.; Ruth, K.; Thöny-Meyer, L.; Zinn, M., Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Appl. Microbiol. Biotechnol., 2010, 87, 41-52.
35. Maitra, S. K.; Nachum, R.; Pearson, F. C., Establishment of beta-hydroxy fatty acids as chemical marker molecules for bacterial endotoxin by gas chromatography-mass spectrometry. Appl. Environ. Microbiol., 1986, 52, 510-514.
36. Guaragna, A.; Nisco, M. D.; Pedatella, S.; Palumbo, G., Studies towards lipid A: a synthetic strategy for the enantioselective preparation of 3-hydroxy fatty acids. Tetrahedron Asymmetry, 2006, 17, 2839-2841.
37. Nandanan, E., Phukan, Prodeep, Sudalai, Arumugam, An efficient method to chiral β-hydroxy acids: Synthesis of lipid-A side chain. Indian J.Chem., 1999, 38B, 893-896.
38. Pirrung, M. C.; Zhang, F.; Ambadi, S.; Gangadhara Rao, Y., Total synthesis of fellutamides, lipopeptide proteasome inhibitors. More sustainable peptide bond formation. Org. Biomol. Chem., 2016, 14, 8367-8375.
39. Bourboula, A.; Limnios, D.; Kokotou, M. G.; Mountanea, O. G.; Kokotos, G., Enantioselective Organocatalysis-Based Synthesis of 3-Hydroxy Fatty Acids and Fatty γ-Lactones. Molecules, 2019, 24.
40. Rodriguez, M. J.; Belvo, M.; Morris, R.; Zeckner, D. J.; Current, W. L.; Sachs, R. K.; Zweifel, M. J., The synthesis of pseudomycin C′ via a novel acid promoted side-chain deacylation of pseudomycin A. Bioorg. Med. Chem. Lett., 2001, 11, 161-164.
41. Gu, Y.; Tian, S.-K., Olefination Reactions of Phosphorus-Stabilized Carbon Nucleophiles. In Stereoselective Alkene Synthesis, Wang, J., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2012, 197-238.
42. Shimoyama, A.; Saeki, A.; Tanimura, N.; Tsutsui, H.; Miyake, K.; Suda, Y.; Fujimoto, Y.; Fukase, K., Chemical Synthesis of Helicobacter pylori Lipopolysaccharide Partial Structures and their Selective Proinflammatory Responses. Chem. Eur. J., 2011, 17, 14464-14474.
43. Jadhav, P. K., Asymmetric synthesis of (3R)-alkanoyloxytetradecanoic acids-components of bacterial lipopolysaccharides. Tetrahedron Lett., 1989, 30, 4763-4766.
44. Krapcho, A. P.; Larson, J. R.; Eldridge, J. M., Potassium permanganate oxidations of terminal olefins and acetylenes to carboxylic acids of one less carbon. J. Org. Chem., 1977, 42, 3749-3753.
45. Kitir, B.; Baldry, M.; Ingmer, H.; Olsen, C. A., Total synthesis and structural validation of cyclodepsipeptides solonamide A and B. Tetrahedron, 2014, 70, 7721-7732.
46. Crimmins, M. T.; She, J., An improved procedure for asymmetric aldol additions with N-acyl oxazolidinones, oxazolidinethiones, and thiazolidinethiones. Synlett., 2004, 1371-1374.
47. Devalankar, D. A.; Chouthaiwale, P. V.; Sudalai, A., Organocatalytic sequential α-aminoxylation and cis-Wittig olefination of aldehydes: synthesis of enantiopure γ-butenolides. Tetrahedron Asymmetry, 2012, 23, 240-244.
48. Chattopadhyay, A.; Mamdapur, V. R., (R)-2,3-O-Cyclohexylideneglyceraldehyde, a Versatile Intermediate for Asymmetric Synthesis of Chiral Alcohol. J. Org. Chem., 1995, 60, 585-587.
49. Imoto, M.; Yoshimura, H.; Kusumoto, S.; Shiba, T., Total Synthesis of Lipid A, Active Principle of Bacterial Endotoxin. Proc. Jpn. Acad. Ser. B, 1984, 60, 285-288.
50. Imoto, M.; Yoshimura, H.; Sakaguchi, N.; Kusumoto, S.; Shiba, T., Total synthesis of escherichia coli lipid A. Tetrahedron Letters, 1985, 26, 1545-1548.
51. Jiang, Z.-H.; Budzynski, W. A.; Qiu, D.; Yalamati, D.; Koganty, R. R., Monophosphoryl lipid A analogues with varying 3-O-substitution: synthesis and potent adjuvant activity. Carbohydr. Res., 2007, 342, 784-796.
52. Tang, S.; Wang, Q.; Guo, Z., Synthesis of a Monophosphoryl Derivative of Escherichia coli Lipid A and Its Efficient Coupling to a Tumor-Associated Carbohydrate Antigen. Chem. Eur. J., 2010, 16, 1319-1325.
53. Adanitsch, F.; Ittig, S.; Stöckl, J.; Oblak, A.; Haegman, M.; Jerala, R.; Beyaert, R.; Kosma, P.; Zamyatina, A., Development of αGlcN(1↔1)αMan-Based Lipid A Mimetics as a Novel Class of Potent Toll-like Receptor 4 Agonists. J. Med. Chem., 2014, 57, 8056-8071.
54. Shimoyama, A.; Di Lorenzo, F.; Yamaura, H.; Mizote, K.; Palmigiano, A.; Pither, M. D.; Speciale, I.; Uto, T.; Masui, S.; Sturiale, L.; Garozzo, D.; Hosomi, K.; Shibata, N.; Kabayama, K.; Fujimoto, Y.; Silipo, A.; Kunisawa, J.; Kiyono, H.; Molinaro, A.; Fukase, K., Lipopolysaccharide from Gut-Associated Lymphoid-Tissue-Resident Alcaligenes faecalis: Complete Structure Determination and Chemical Synthesis of Its Lipid A. Angew. Chem. Int. Ed., 2021, 60, 10023-10031.
55. Gududuru, V.; Zeng, K.; Tsukahara, R.; Makarova, N.; Fujiwara, Y.; Pigg, K. R.; Baker, D. L.; Tigyi, G.; Miller, D. D., Identification of Darmstoff analogs as selective agonists and antagonists of lysophosphatidic acid receptors. Bioorg. Med. Chem. Lett., 2006, 16, 451-456.
56. Momiyama, N.; Yamamoto, H., Simple Synthesis of α-Hydroxyamino Carbonyl Compounds:  New Scope of the Nitroso Aldol Reaction. Org. Lett., 2002, 4, 3579-3582.
57. Bubnov, Y. N.; Pershin, D. G.; Karionova, A. L.; Gurskii, M. E., Allylboration of nitrosobenzene. Mendeleev Commun., 2002, 12, 202-203.
58. Beaudoin, D.; Wuest, J. D., Dimerization of Aromatic C-Nitroso Compounds. Chem. Rev., 2016, 116, 258-286.
59. Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Hibino, K.; Shoji, M., Direct Proline-Catalyzed Asymmetric α-Aminoxylation of Aldehydes and Ketones. J. Org. Chem., 2004, 69, 5966-5973.
60. Sanford, A. B.; Thane, T. A.; McGinnis, T. M.; Chen, P.-P.; Hong, X.; Jarvo, E. R., Nickel-Catalyzed Alkyl–Alkyl Cross-Electrophile Coupling Reaction of 1,3-Dimesylates for the Synthesis of Alkylcyclopropanes. J. Am. Chem. Soc., 2020, 142, 5017-5023.
61. Hackel, T.; McGrath, N. A., Tris(pentafluorophenyl)borane-Catalyzed Reactions Using Silanes. Molecules, 2019, 24.
62. Jiang, B., A stereocontrolled syntheses of conjugated dienyl trifluoromethyl ketones via the Claisen rearrangement of allyl 2-phenylsulfanyl-1-(trifluromethyl) vinyl ethers. Chem. Commun., 1996, 861-862.
63. Koo, S.; Ahn, K.; Byeon, S.; Yang, J.; Ji, M.; Choi, S. Process for selective oxidation of sulfides by the use of an oxidant system consisting of lithium molibdenate niobate and hydrogen peroxide. WO2001062719, 2001.
64. Driver, M. J.; Browne, J. E. Oxidation of phosphorus compounds. WO9714702, 1997.
65. Baddiley, J.; Clark, V. M.; Michalski, J. J.; Todd, A. R., 176. Studies on phosphorylation. Part V. The reaction of tertiary bases with esters of phosphorous, phosphoric, and pyrophosphoric acids. A new method of selective debenzylation. J. Chem. Soc. (Resumed), 1949, 815-821.
66. Hayakawa, Y.; Uchiyama, M.; Noyori, R., Nonaqueous oxidation of nucleoside phosphites to the phosphates. Tetrahedron Letters, 1986, 27, 4191-4194.
67. Allen, J. G.; Fraser-Reid, B., n-Pentenyl Glycosyl Orthoesters as Versatile Intermediates in Oligosaccharide Synthesis. The Proteoglycan Linkage Region1. J. Am. Chem. Soc., 1999, 121, 468-469.
68. van Boeckel, C. A. A.; Beetz, T., Hydrazinedithiocarbonate (HDTC) as a new reagent for the improved removal of chloroacetyl and bromoacetyl protective groups. Tetrahedron Letters, 1983, 24, 3775-3778.
69. Lefeber, D. J.; Kamerling, J. P.; Vliegenthart, J. F. G., The Use of Diazabicyclo[2.2.2]octane as a Novel Highly Selective Dechloroacetylation Reagent. Org. Lett., 2000, 2, 701-703.
70. Chen, C. W.; Wang, C. C.; Li, X. R.; Witek, H.; Mong, K.-K. T., Sub-stoichiometric reductive etherification of carbohydrate substrates and one-pot protecting group manipulation. Org. Biomol. Chem., 2020, 18, 3135-3141.
71. Soderquist, J. A.; Anderson, C. L., Crystalline anhydrous trimethylamine N-oxide. Tetrahedron Letters, 1986, 27, 3961-3962.
72. Lloyd, D.; Bylsma, M.; Bright, D. K.; Chen, X.; Bennett, C. S., Mild Method for 2-Naphthylmethyl Ether Protecting Group Removal Using a Combination of 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and β-Pinene. J. Org. Chem., 2017, 82, 3926-3934.
73. Zhou, Z.; Ribeiro, A. A.; Raetz, C. R. H., High-resolution NMR Spectroscopy of Lipid A Molecules Containing 4-Amino-4-deoxy-L-arabinose and Phosphoethanolamine Substituents. J. Biol. Chem., 2000, 275, 13542-13551.
74. Hollaus, R.; Ittig, S.; Hofinger, A.; Haegman, M.; Beyaert, R.; Kosma, P.; Zamyatina, A., Chemical synthesis of Burkholderia Lipid A modified with glycosyl phosphodiester-linked 4-amino-4-deoxy-β-L-arabinose and its immunomodulatory potential. Chemistry, 2015, 21, 4102-4114.
75. Zamyatina, A.; Sekljic, H.; Brade, H.; Kosma, P., Synthesis and purity assessment of tetra- and pentaacyl lipid A of Chlamydia containing (R)-3-hydroxyicosanoic acid. Tetrahedron, 2004, 60, 12113-12137.
76. Bligh, E. G.; Dyer, W. J., A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION. Can. J. Biochem. Physiol., 1959, 37, 911-917.
77. Jones, M. D. Y., GB), Lunn, Matthew David (Leeds, GB), Poole, Andrew David (Yorkshire, GB), Shenton, Adele (Hull, GB) Ion-exchange resins, their preparation and uses. US6017969A, 2000.
78. Pietrzyk, D. J., Ion-exchange resins in non-aqueous solvents—III: Solvent-uptake properties of ion-exchange resins and related adsorbents. Talanta, 1969, 16, 169-179.
79. Murtaugh, J. J., Caldas Jr., Isidoro Ion-exchange methods for the purification of streptomycin. US2970138A, 1961.
80. Bodamer, G. W.; Kunin, R., Behavior of Ion Exchange Resins in Solvents Other Than Water - Swelling and Exchange Characteristics. Ind. Eng. Chem., 1953, 45, 2577-2580.
81. Beutler, B.; Cerami, A., TUMOR NECROSIS, CACHEXIA, SHOCK, AND INFLAMMATION: A COMMON MEDIATOR. Annu. Rev. Biochem., 1988, 57, 505-518.
82. Delaveris, C. S.; Chiu, S. H.; Riley, N. M.; Bertozzi, C. R., Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc. Natl. Acad. Sci., 2021, 118, e2012408118.
83. Teghanemt, A.; Zhang, D.; Levis, E. N.; Weiss, J. P.; Gioannini, T. L., Molecular Basis of Reduced Potency of Underacylated Endotoxins. J. Immunol., 2005, 175, 4669-4676.
84. Erridge, C.; Bennett-Guerrero, E.; Poxton, I. R., Structure and function of lipopolysaccharides. Microbes Infect., 2002, 4, 837-851.
85. Maeshima, N.; Fernandez, R., Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front. Cell. Infect. Microbiol., 2013, 3.
86. Kawai, T.; Adachi, O.; Ogawa, T.; Takeda, K.; Akira, S., Unresponsiveness of MyD88-Deficient Mice to Endotoxin. Immunity, 1999, 11, 115-122.
87. Aldapa-Vega, G.; Moreno-Eutimio, M. A.; Berlanga-Taylor, A. J.; Jiménez-Uribe, A. P.; Nieto-Velazquez, G.; López-Ortega, O.; Mancilla-Herrera, I.; Cortés-Malagón, E. M.; Gunn, J. S.; Isibasi, A.; Wong-Baeza, I.; López-Macías, C.; Pastelin-Palacios, R., Structural variants of Salmonella Typhimurium lipopolysaccharide induce less dimerization of TLR4/MD-2 and reduced pro-inflammatory cytokine production in human monocytes. Mol. Immunol., 2019, 111, 43-52.
88. Zhang, Y.; Gaekwad, J.; Wolfert, M. A.; Boons, G.-J., Innate Immune Responses of Synthetic Lipid A Derivatives of Neisseria meningitidis. Chem. Eur. J., 2008, 14, 558-569.
89. Zariri, A.; van der Ley, P., Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev. Vaccines, 2015, 14, 861-876.
90. Sugimoto, K.; Kobayashi, A.; Kohyama, A.; Sakai, H.; Matsuya, Y., Divinylcarbinol Desymmetrization Strategy: A Concise and Reliable Approach to Chiral Hydroxylated Fatty Acid Derivatives. J. Org. Chem., 2021, 86, 3970-3980.
91. Perepogu, A. K.; Raman, D.; Murty, U. S. N.; Rao, V. J., Stereoselective Synthesis of (+)-Nephrosteranic Acid by Ring-Closing Metathesis and Its Biological Evaluation. Synth. Commun., 2010, 40, 686-696.
92. Reddy, R. G.; Dachavaram, S. S.; Reddy, B. R.; Kalyankar, K. B.; Rajan, W. D.; Kootar, S.; Kumar, A.; Das, S.; Chakravarty, S., Fellutamide B Synthetic Path Intermediates with in Vitro Neuroactive Function Shows Mood-Elevating Effect in Stress-Induced Zebrafish Model. ACS Omega, 2018, 3, 10534-10544.
93. Hanessian, S.; Tehim, A.; Chen, P., Total synthesis of (-)-tetrahydrolipstatin. J. Org. Chem., 1993, 58, 7768-7781.
94. Fukase, K.; Fukase, Y.; Oikawa, M.; Liu, W.-C.; Suda, Y.; Kusumoto, S., Divergent synthesis and biological activities of lipid A analogues of shorter acyl chains. Tetrahedron, 1998, 54, 4033-4050.
95. Imoto, M.; Yoshimura, H.; Shimamoto, T.; Sakaguchi, N.; Kusumoto, S.; Shiba, T., Total Synthesis of Escherichia coli Lipid A, the Endotoxically Active Principle of Cell-Surface Lipopolysaccharide. Bull. Chem. Soc. Jpn., 1987, 60, 2205-2214.
96. Oikawa, M.; Kusumoto, S., On a practical synthesis of β-hydroxy fatty acid derivatives. Tetrahedron Asymmetry, 1995, 6, 961-966.
97. Kunisawa, J.; Fukase, K.; Kiyono, H. Lipid A containing complex of glucosamine disaccharide chain and fatty acid chains and adjuvant using it. WO2018155051, 2018.
98. Huang, L.; Huang, X., Highly Efficient Syntheses of Hyaluronic Acid Oligosaccharides. Chem. Eur. J., 2007, 13, 529-540.
99. Wang, X.; Liu, J.; Wang, D.; Bi, X.; Zhao, W., Synthesis and Characterization of Sodium 5-Chlorotetrazolate Dihydrate by Chlorination of 1H-Tetrazole. Z. Anorg. Allg. Chem., 2015, 641, 631-635.
電子全文 電子全文(網際網路公開日期:20270125)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top