|
1. Cohen, J.; Cristofaro, P.; Carlet, J.; Opal, S., New method of classifying infections in critically ill patients*. Crit. Care Med., 2004, 32, 1510-1526. 2. Baumann, P., Isolation of Acinetobacter from Soil and Water. J. Bacteriol., 1968, 96, 39-42. 3. Vila, J.; Martí, S.; Sánchez-Céspedes, J., Porins, efflux pumps and multidrug resistance in Acinetobacter baumannii. J. Antimicrob. Chemother., 2007, 59, 1210-1215. 4. Espinal, P.; Martí, S.; Vila, J., Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J. Hosp. Infect., 2012, 80, 56-60. 5. Houang, E. T.; Sormunen, R. T.; Lai, L.; Chan, C. Y.; Leong, A. S., Effect of desiccation on the ultrastructural appearances of Acinetobacter baumannii and Acinetobacter lwoffii. J. Clin. Pathol., 1998, 51, 786-788. 6. Garnacho-Montero, J.; Ortiz-Leyba, C.; Fernández-Hinojosa, E.; Aldabó-Pallás, T.; Cayuela, A.; Marquez-Vácaro, J. A.; Garcia-Curiel, A.; Jiménez-Jiménez, F. J., Acinetobacter baumannii ventilator-associated pneumonia: epidemiological and clinical findings. Intensive Care Med., 2005, 31, 649-655. 7. Krol, V.; Hamid, N. S.; Cunha, B. A., Neurosurgically related nosocomial Acinetobacter baumannii meningitis: report of two cases and literature review. J. Hosp. Infect., 2009, 71, 176-180. 8. Laganà, P.; Melcarne, L.; Delia, S., Acinetobacter baumannii and endocarditis, rare complication but important clinical relevance. Int. J. Cardiol., 2015, 187, 678-679. 9. Zhang, W.; Wu, Y.-G.; Qi, X.-M.; Dai, H.; Lu, W.; Zhao, M., Peritoneal Dialysis–Related Peritonitis with Acinetobacter Baumannii: A Review of Seven Cases. Perit. Dial. Int., 2014, 34, 317-321. 10. Pour, N. K.; Dusane, D. H.; Dhakephalkar, P. K.; Zamin, F. R.; Zinjarde, S. S.; Chopade, B. A., Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Microbiol. Immunol., 2011, 62, 328-338. 11. Beck-SaguĖ, C. M.; Jarvis, W. R.; Brook, J. H.; Culver, D. H.; Potts, A.; Gay, E.; Shotts, B. W.; Hill, B.; Anderson, R. L.; Weinstein, M. P., EPIDEMIC BACTEREMIA DUE TO ACINETOBACTER BAUMANNII IN FIVE INTENSIVE CARE UNITS. Am. J. Epidemiol., 1990, 132, 723-733. 12. Domalaon, R.; Idowu, T.; Zhanel George, G.; Schweizer, F., Antibiotic Hybrids: the Next Generation of Agents and Adjuvants against Gram-Negative Pathogens? Clin. Microbiol. Rev., 2018, 31, e00077-17. 13. Poole, K., Outer Membranes and Efflux: The Path to Multidrug Resistance in Gram- Negative Bacteria. Curr. Pharm. Biotechnol., 2002, 3, 77-98. 14. Kyriakidis, I.; Vasileiou, E.; Pana, Z. D.; Tragiannidis, A., Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens, 2021, 10. 15. Pfeiffer, R., Untersuchungen über das Choleragift. Z. Hyg. Infektionskr., 1892, 11, 393-412. 16. Boivin, A.; Mesrobeanu, L., Recherches sur les antigenes somatiques et sur les endotoxines des bacteries. I. Considerations generales et expose des techniques utilisees. Rev. immunol, 1935, 1, 553-569. 17. Morgan, W. T. J., Studies in immuno-chemistry: The isolation and properties of a specific antigenic substance from B. dysenteriae (Shiga). Biochem. J., 1937, 31, 2003-2021. 18. Goebel, W. F.; Binkley, F.; Perlman, E., STUDIES ON THE FLEXNER GROUP OF DYSENTERY BACILLI : I. THE SPECIFIC ANTIGENS OF SHIGELLA PARADYSENTERIAE (FLEXNER). J. Exp. Med., 1945, 81, 315-330. 19. Sondhi, P.; Maruf, M. H.; Stine, K. J., Nanomaterials for Biosensing Lipopolysaccharide. Biosensors, 2020, 10. 20. Westphal, O.; Lüderitz, O., Chemische erforschung von lipopolysacchariden gramnegativer bakterien. Angew. Chem., 1954, 66, 407-417. 21. Kim, H. M.; Park, B. S.; Kim, J.-I.; Kim, S. E.; Lee, J.; Oh, S. C.; Enkhbayar, P.; Matsushima, N.; Lee, H.; Yoo, O. J.; Lee, J.-O., Crystal Structure of the TLR4-MD-2 Complex with Bound Endotoxin Antagonist Eritoran. Cell, 2007, 130, 906-917. 22. Kawai, T.; Akira, S., The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11, 373-384. 23. Rietschel, E. T.; Kirikae, T.; Schade, F. U.; Ulmer, A. J.; Holst, O.; Brade, H.; Schmidt, G.; Mamat, U.; Grimmecke, H.-D.; Kusumoto, S.; Zähringer, U., The chemical structure of bacterial endotoxin in relation to bioactivity. Immunobiology, 1993, 187, 169-190. 24. Miyake, K., Invited review: Roles for accessory molecules in microbial recognition by Toll-like receptors. J. Endotoxin Res., 2006, 12, 195-204. 25. Park, B. S.; Song, D. H.; Kim, H. M.; Choi, B.-S.; Lee, H.; Lee, J.-O., The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature, 2009, 458, 1191-1195. 26. Antunes, L. C. S.; Imperi, F.; Carattoli, A.; Visca, P., Deciphering the Multifactorial Nature of Acinetobacter baumannii Pathogenicity. PLOS ONE, 2011, 6, e22674. 27. Piechaud, M.; Second, L. In Studies of 26 strains of Moraxella Iwoffi, Ann. Inst. Pasteur. (Paris), 1951, 97-99. 28. Kröger, C.; MacKenzie, K. D.; Alshabib, E. Y.; Kirzinger, M. W B.; Suchan, D. M.; Chao, T.-C.; Akulova, V.; Miranda-CasoLuengo, A. A.; Monzon, V. A.; Conway, T.; Sivasankaran, S. K.; Hinton, J. C D.; Hokamp, K.; Cameron, Andrew D S., The primary transcriptome, small RNAs and regulation of antimicrobial resistance in Acinetobacter baumannii ATCC 17978. Nucleic Acids Res. 2018, 46, 9684-9698. 29. Galanos, C.; LÜDeritz, O.; Freudenberg, M.; Brade, L.; Schade, U.; Rietschel, E. T.; Kusumoto, S.; Shiba, T., Biological activity of synthetic heptaacyl lipid A representing a component of Salmonella minnesota R595 lipid A. Eur. J. Biochem., 1986, 160, 55-59. 30. Kawasaki, K.; Ernst, R. K.; Miller, S. I., 3-O-Deacylation of Lipid A by PagL, a PhoP/PhoQ-regulated Deacylase of Salmonella typhimurium, Modulates Signaling through Toll-like Receptor 4*. J. Biol. Chem., 2004, 279, 20044-20048. 31. Tsukioka, D.; Nishizawa, T.; Miyase, T.; Achiwa, K.; Suda, T.; Soma, G.-I.; Mizuno, D. i., Structural characterization of lipid A obtained from Pantoea agglomerans lipopolysaccharide. FEMS Microbiol. Lett., 1997, 149, 239-244. 32. Zhang, Y.; Gaekwad, J.; Wolfert, M. A.; Boons, G.-J., Modulation of Innate Immune Responses with Synthetic Lipid A Derivatives. J. Am. Chem. Soc., 2007, 12, 5200-5216. 33. 陳巧文. 醣之還原醚化新方法開發以及應用和鮑氏不動桿菌脂多醣A全合成. 國立交通大學, 2020. 34. Ren, Q.; Ruth, K.; Thöny-Meyer, L.; Zinn, M., Enatiomerically pure hydroxycarboxylic acids: current approaches and future perspectives. Appl. Microbiol. Biotechnol., 2010, 87, 41-52. 35. Maitra, S. K.; Nachum, R.; Pearson, F. C., Establishment of beta-hydroxy fatty acids as chemical marker molecules for bacterial endotoxin by gas chromatography-mass spectrometry. Appl. Environ. Microbiol., 1986, 52, 510-514. 36. Guaragna, A.; Nisco, M. D.; Pedatella, S.; Palumbo, G., Studies towards lipid A: a synthetic strategy for the enantioselective preparation of 3-hydroxy fatty acids. Tetrahedron Asymmetry, 2006, 17, 2839-2841. 37. Nandanan, E., Phukan, Prodeep, Sudalai, Arumugam, An efficient method to chiral β-hydroxy acids: Synthesis of lipid-A side chain. Indian J.Chem., 1999, 38B, 893-896. 38. Pirrung, M. C.; Zhang, F.; Ambadi, S.; Gangadhara Rao, Y., Total synthesis of fellutamides, lipopeptide proteasome inhibitors. More sustainable peptide bond formation. Org. Biomol. Chem., 2016, 14, 8367-8375. 39. Bourboula, A.; Limnios, D.; Kokotou, M. G.; Mountanea, O. G.; Kokotos, G., Enantioselective Organocatalysis-Based Synthesis of 3-Hydroxy Fatty Acids and Fatty γ-Lactones. Molecules, 2019, 24. 40. Rodriguez, M. J.; Belvo, M.; Morris, R.; Zeckner, D. J.; Current, W. L.; Sachs, R. K.; Zweifel, M. J., The synthesis of pseudomycin C′ via a novel acid promoted side-chain deacylation of pseudomycin A. Bioorg. Med. Chem. Lett., 2001, 11, 161-164. 41. Gu, Y.; Tian, S.-K., Olefination Reactions of Phosphorus-Stabilized Carbon Nucleophiles. In Stereoselective Alkene Synthesis, Wang, J., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg, 2012, 197-238. 42. Shimoyama, A.; Saeki, A.; Tanimura, N.; Tsutsui, H.; Miyake, K.; Suda, Y.; Fujimoto, Y.; Fukase, K., Chemical Synthesis of Helicobacter pylori Lipopolysaccharide Partial Structures and their Selective Proinflammatory Responses. Chem. Eur. J., 2011, 17, 14464-14474. 43. Jadhav, P. K., Asymmetric synthesis of (3R)-alkanoyloxytetradecanoic acids-components of bacterial lipopolysaccharides. Tetrahedron Lett., 1989, 30, 4763-4766. 44. Krapcho, A. P.; Larson, J. R.; Eldridge, J. M., Potassium permanganate oxidations of terminal olefins and acetylenes to carboxylic acids of one less carbon. J. Org. Chem., 1977, 42, 3749-3753. 45. Kitir, B.; Baldry, M.; Ingmer, H.; Olsen, C. A., Total synthesis and structural validation of cyclodepsipeptides solonamide A and B. Tetrahedron, 2014, 70, 7721-7732. 46. Crimmins, M. T.; She, J., An improved procedure for asymmetric aldol additions with N-acyl oxazolidinones, oxazolidinethiones, and thiazolidinethiones. Synlett., 2004, 1371-1374. 47. Devalankar, D. A.; Chouthaiwale, P. V.; Sudalai, A., Organocatalytic sequential α-aminoxylation and cis-Wittig olefination of aldehydes: synthesis of enantiopure γ-butenolides. Tetrahedron Asymmetry, 2012, 23, 240-244. 48. Chattopadhyay, A.; Mamdapur, V. R., (R)-2,3-O-Cyclohexylideneglyceraldehyde, a Versatile Intermediate for Asymmetric Synthesis of Chiral Alcohol. J. Org. Chem., 1995, 60, 585-587. 49. Imoto, M.; Yoshimura, H.; Kusumoto, S.; Shiba, T., Total Synthesis of Lipid A, Active Principle of Bacterial Endotoxin. Proc. Jpn. Acad. Ser. B, 1984, 60, 285-288. 50. Imoto, M.; Yoshimura, H.; Sakaguchi, N.; Kusumoto, S.; Shiba, T., Total synthesis of escherichia coli lipid A. Tetrahedron Letters, 1985, 26, 1545-1548. 51. Jiang, Z.-H.; Budzynski, W. A.; Qiu, D.; Yalamati, D.; Koganty, R. R., Monophosphoryl lipid A analogues with varying 3-O-substitution: synthesis and potent adjuvant activity. Carbohydr. Res., 2007, 342, 784-796. 52. Tang, S.; Wang, Q.; Guo, Z., Synthesis of a Monophosphoryl Derivative of Escherichia coli Lipid A and Its Efficient Coupling to a Tumor-Associated Carbohydrate Antigen. Chem. Eur. J., 2010, 16, 1319-1325. 53. Adanitsch, F.; Ittig, S.; Stöckl, J.; Oblak, A.; Haegman, M.; Jerala, R.; Beyaert, R.; Kosma, P.; Zamyatina, A., Development of αGlcN(1↔1)αMan-Based Lipid A Mimetics as a Novel Class of Potent Toll-like Receptor 4 Agonists. J. Med. Chem., 2014, 57, 8056-8071. 54. Shimoyama, A.; Di Lorenzo, F.; Yamaura, H.; Mizote, K.; Palmigiano, A.; Pither, M. D.; Speciale, I.; Uto, T.; Masui, S.; Sturiale, L.; Garozzo, D.; Hosomi, K.; Shibata, N.; Kabayama, K.; Fujimoto, Y.; Silipo, A.; Kunisawa, J.; Kiyono, H.; Molinaro, A.; Fukase, K., Lipopolysaccharide from Gut-Associated Lymphoid-Tissue-Resident Alcaligenes faecalis: Complete Structure Determination and Chemical Synthesis of Its Lipid A. Angew. Chem. Int. Ed., 2021, 60, 10023-10031. 55. Gududuru, V.; Zeng, K.; Tsukahara, R.; Makarova, N.; Fujiwara, Y.; Pigg, K. R.; Baker, D. L.; Tigyi, G.; Miller, D. D., Identification of Darmstoff analogs as selective agonists and antagonists of lysophosphatidic acid receptors. Bioorg. Med. Chem. Lett., 2006, 16, 451-456. 56. Momiyama, N.; Yamamoto, H., Simple Synthesis of α-Hydroxyamino Carbonyl Compounds: New Scope of the Nitroso Aldol Reaction. Org. Lett., 2002, 4, 3579-3582. 57. Bubnov, Y. N.; Pershin, D. G.; Karionova, A. L.; Gurskii, M. E., Allylboration of nitrosobenzene. Mendeleev Commun., 2002, 12, 202-203. 58. Beaudoin, D.; Wuest, J. D., Dimerization of Aromatic C-Nitroso Compounds. Chem. Rev., 2016, 116, 258-286. 59. Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Hibino, K.; Shoji, M., Direct Proline-Catalyzed Asymmetric α-Aminoxylation of Aldehydes and Ketones. J. Org. Chem., 2004, 69, 5966-5973. 60. Sanford, A. B.; Thane, T. A.; McGinnis, T. M.; Chen, P.-P.; Hong, X.; Jarvo, E. R., Nickel-Catalyzed Alkyl–Alkyl Cross-Electrophile Coupling Reaction of 1,3-Dimesylates for the Synthesis of Alkylcyclopropanes. J. Am. Chem. Soc., 2020, 142, 5017-5023. 61. Hackel, T.; McGrath, N. A., Tris(pentafluorophenyl)borane-Catalyzed Reactions Using Silanes. Molecules, 2019, 24. 62. Jiang, B., A stereocontrolled syntheses of conjugated dienyl trifluoromethyl ketones via the Claisen rearrangement of allyl 2-phenylsulfanyl-1-(trifluromethyl) vinyl ethers. Chem. Commun., 1996, 861-862. 63. Koo, S.; Ahn, K.; Byeon, S.; Yang, J.; Ji, M.; Choi, S. Process for selective oxidation of sulfides by the use of an oxidant system consisting of lithium molibdenate niobate and hydrogen peroxide. WO2001062719, 2001. 64. Driver, M. J.; Browne, J. E. Oxidation of phosphorus compounds. WO9714702, 1997. 65. Baddiley, J.; Clark, V. M.; Michalski, J. J.; Todd, A. R., 176. Studies on phosphorylation. Part V. The reaction of tertiary bases with esters of phosphorous, phosphoric, and pyrophosphoric acids. A new method of selective debenzylation. J. Chem. Soc. (Resumed), 1949, 815-821. 66. Hayakawa, Y.; Uchiyama, M.; Noyori, R., Nonaqueous oxidation of nucleoside phosphites to the phosphates. Tetrahedron Letters, 1986, 27, 4191-4194. 67. Allen, J. G.; Fraser-Reid, B., n-Pentenyl Glycosyl Orthoesters as Versatile Intermediates in Oligosaccharide Synthesis. The Proteoglycan Linkage Region1. J. Am. Chem. Soc., 1999, 121, 468-469. 68. van Boeckel, C. A. A.; Beetz, T., Hydrazinedithiocarbonate (HDTC) as a new reagent for the improved removal of chloroacetyl and bromoacetyl protective groups. Tetrahedron Letters, 1983, 24, 3775-3778. 69. Lefeber, D. J.; Kamerling, J. P.; Vliegenthart, J. F. G., The Use of Diazabicyclo[2.2.2]octane as a Novel Highly Selective Dechloroacetylation Reagent. Org. Lett., 2000, 2, 701-703. 70. Chen, C. W.; Wang, C. C.; Li, X. R.; Witek, H.; Mong, K.-K. T., Sub-stoichiometric reductive etherification of carbohydrate substrates and one-pot protecting group manipulation. Org. Biomol. Chem., 2020, 18, 3135-3141. 71. Soderquist, J. A.; Anderson, C. L., Crystalline anhydrous trimethylamine N-oxide. Tetrahedron Letters, 1986, 27, 3961-3962. 72. Lloyd, D.; Bylsma, M.; Bright, D. K.; Chen, X.; Bennett, C. S., Mild Method for 2-Naphthylmethyl Ether Protecting Group Removal Using a Combination of 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and β-Pinene. J. Org. Chem., 2017, 82, 3926-3934. 73. Zhou, Z.; Ribeiro, A. A.; Raetz, C. R. H., High-resolution NMR Spectroscopy of Lipid A Molecules Containing 4-Amino-4-deoxy-L-arabinose and Phosphoethanolamine Substituents. J. Biol. Chem., 2000, 275, 13542-13551. 74. Hollaus, R.; Ittig, S.; Hofinger, A.; Haegman, M.; Beyaert, R.; Kosma, P.; Zamyatina, A., Chemical synthesis of Burkholderia Lipid A modified with glycosyl phosphodiester-linked 4-amino-4-deoxy-β-L-arabinose and its immunomodulatory potential. Chemistry, 2015, 21, 4102-4114. 75. Zamyatina, A.; Sekljic, H.; Brade, H.; Kosma, P., Synthesis and purity assessment of tetra- and pentaacyl lipid A of Chlamydia containing (R)-3-hydroxyicosanoic acid. Tetrahedron, 2004, 60, 12113-12137. 76. Bligh, E. G.; Dyer, W. J., A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION. Can. J. Biochem. Physiol., 1959, 37, 911-917. 77. Jones, M. D. Y., GB), Lunn, Matthew David (Leeds, GB), Poole, Andrew David (Yorkshire, GB), Shenton, Adele (Hull, GB) Ion-exchange resins, their preparation and uses. US6017969A, 2000. 78. Pietrzyk, D. J., Ion-exchange resins in non-aqueous solvents—III: Solvent-uptake properties of ion-exchange resins and related adsorbents. Talanta, 1969, 16, 169-179. 79. Murtaugh, J. J., Caldas Jr., Isidoro Ion-exchange methods for the purification of streptomycin. US2970138A, 1961. 80. Bodamer, G. W.; Kunin, R., Behavior of Ion Exchange Resins in Solvents Other Than Water - Swelling and Exchange Characteristics. Ind. Eng. Chem., 1953, 45, 2577-2580. 81. Beutler, B.; Cerami, A., TUMOR NECROSIS, CACHEXIA, SHOCK, AND INFLAMMATION: A COMMON MEDIATOR. Annu. Rev. Biochem., 1988, 57, 505-518. 82. Delaveris, C. S.; Chiu, S. H.; Riley, N. M.; Bertozzi, C. R., Modulation of immune cell reactivity with cis-binding Siglec agonists. Proc. Natl. Acad. Sci., 2021, 118, e2012408118. 83. Teghanemt, A.; Zhang, D.; Levis, E. N.; Weiss, J. P.; Gioannini, T. L., Molecular Basis of Reduced Potency of Underacylated Endotoxins. J. Immunol., 2005, 175, 4669-4676. 84. Erridge, C.; Bennett-Guerrero, E.; Poxton, I. R., Structure and function of lipopolysaccharides. Microbes Infect., 2002, 4, 837-851. 85. Maeshima, N.; Fernandez, R., Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Front. Cell. Infect. Microbiol., 2013, 3. 86. Kawai, T.; Adachi, O.; Ogawa, T.; Takeda, K.; Akira, S., Unresponsiveness of MyD88-Deficient Mice to Endotoxin. Immunity, 1999, 11, 115-122. 87. Aldapa-Vega, G.; Moreno-Eutimio, M. A.; Berlanga-Taylor, A. J.; Jiménez-Uribe, A. P.; Nieto-Velazquez, G.; López-Ortega, O.; Mancilla-Herrera, I.; Cortés-Malagón, E. M.; Gunn, J. S.; Isibasi, A.; Wong-Baeza, I.; López-Macías, C.; Pastelin-Palacios, R., Structural variants of Salmonella Typhimurium lipopolysaccharide induce less dimerization of TLR4/MD-2 and reduced pro-inflammatory cytokine production in human monocytes. Mol. Immunol., 2019, 111, 43-52. 88. Zhang, Y.; Gaekwad, J.; Wolfert, M. A.; Boons, G.-J., Innate Immune Responses of Synthetic Lipid A Derivatives of Neisseria meningitidis. Chem. Eur. J., 2008, 14, 558-569. 89. Zariri, A.; van der Ley, P., Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Rev. Vaccines, 2015, 14, 861-876. 90. Sugimoto, K.; Kobayashi, A.; Kohyama, A.; Sakai, H.; Matsuya, Y., Divinylcarbinol Desymmetrization Strategy: A Concise and Reliable Approach to Chiral Hydroxylated Fatty Acid Derivatives. J. Org. Chem., 2021, 86, 3970-3980. 91. Perepogu, A. K.; Raman, D.; Murty, U. S. N.; Rao, V. J., Stereoselective Synthesis of (+)-Nephrosteranic Acid by Ring-Closing Metathesis and Its Biological Evaluation. Synth. Commun., 2010, 40, 686-696. 92. Reddy, R. G.; Dachavaram, S. S.; Reddy, B. R.; Kalyankar, K. B.; Rajan, W. D.; Kootar, S.; Kumar, A.; Das, S.; Chakravarty, S., Fellutamide B Synthetic Path Intermediates with in Vitro Neuroactive Function Shows Mood-Elevating Effect in Stress-Induced Zebrafish Model. ACS Omega, 2018, 3, 10534-10544. 93. Hanessian, S.; Tehim, A.; Chen, P., Total synthesis of (-)-tetrahydrolipstatin. J. Org. Chem., 1993, 58, 7768-7781. 94. Fukase, K.; Fukase, Y.; Oikawa, M.; Liu, W.-C.; Suda, Y.; Kusumoto, S., Divergent synthesis and biological activities of lipid A analogues of shorter acyl chains. Tetrahedron, 1998, 54, 4033-4050. 95. Imoto, M.; Yoshimura, H.; Shimamoto, T.; Sakaguchi, N.; Kusumoto, S.; Shiba, T., Total Synthesis of Escherichia coli Lipid A, the Endotoxically Active Principle of Cell-Surface Lipopolysaccharide. Bull. Chem. Soc. Jpn., 1987, 60, 2205-2214. 96. Oikawa, M.; Kusumoto, S., On a practical synthesis of β-hydroxy fatty acid derivatives. Tetrahedron Asymmetry, 1995, 6, 961-966. 97. Kunisawa, J.; Fukase, K.; Kiyono, H. Lipid A containing complex of glucosamine disaccharide chain and fatty acid chains and adjuvant using it. WO2018155051, 2018. 98. Huang, L.; Huang, X., Highly Efficient Syntheses of Hyaluronic Acid Oligosaccharides. Chem. Eur. J., 2007, 13, 529-540. 99. Wang, X.; Liu, J.; Wang, D.; Bi, X.; Zhao, W., Synthesis and Characterization of Sodium 5-Chlorotetrazolate Dihydrate by Chlorination of 1H-Tetrazole. Z. Anorg. Allg. Chem., 2015, 641, 631-635.
|