跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 17:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾緯
研究生(外文):Zhong, Wei
論文名稱:重組蛋白前腦利鈉肽的生產與其胜肽探針的篩選
論文名稱(外文):Production of Recombinant Pro-B-type Natriuretic Peptide and Selection of Peptide Probes
指導教授:李耀坤李耀坤引用關係
指導教授(外文):Li, Yaw-Kuen
口試委員:李耀坤吳東昆李博仁
口試委員(外文):Li, Yaw-KuenWu, Tung-KungLi, Bor-Ran
口試日期:2022-01-18
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:128
中文關鍵詞:心臟衰竭前腦利鈉肽核醣體展示技術胜肽生物膜干涉技術
外文關鍵詞:heart failureproBNPribosome displaypeptidebio-layer interferometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 .............................................................................................................................. i
英文摘要 ............................................................................................................................. ii
目錄 ....................................................................................................................................iii
圖目錄 ............................................................................................................................... vii
表目錄 ............................................................................................................................... xii
第一章 緒論 ............................................................................................................. 1
1.1 心臟衰竭 (Heart Failure) ........................................................................... 1
1.2 前腦利鈉肽、N 端前腦利鈉肽與腦利鈉肽 ............................................. 4
1.3 以胜肽進行辨認 ......................................................................................... 5
1.4 核醣體展示技術 (Ribosome Display) ....................................................... 6
1.5 生物膜干涉技術 (Bio-Layer Interferometry, BLI) ................................... 7
1.6 研究目的 ..................................................................................................... 8
1.7 實驗進程 ..................................................................................................... 8
第二章 實驗方法 ................................................................................................... 10
2.1 轉殖 (Transformation) .............................................................................. 10
2.2 蛋白質純化 ............................................................................................... 10
2.3 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 ................................................... 12
iv
2.4 布拉德福蛋白質定量法 (Bradford Protein Assay) ................................. 13
2.5 西方墨點法 (Western Blot) ..................................................................... 14
2.6 瓊脂糖凝膠電泳 (Agarose Gel Electrophoresis)..................................... 15
2.7 用於核醣體展示技術之蛋白質製備 ....................................................... 16
2.7.1 UlaG 蛋白質之表現與純化...................................................................... 16
2.7.2 UlaG-proBNP 蛋白質之表現與純化 ....................................................... 17
2.8 核醣體展示技術 ....................................................................................... 19
2.8.1 核醣體展示 DNA 基因庫設計................................................................. 19
2.8.2 UlaG-proBNP 與 UlaG 磁珠製備 ............................................................ 20
2.8.3 核醣體展示技術 (Ribosome Display) 實驗流程 ................................... 21
2.8.4 次世代定序 (Next Generation Sequencing) 與資料處理 ...................... 25
2.9 胜肽合成 ................................................................................................... 25
2.10 重組蛋白 proBNP 之表現與純化 ............................................................ 26
2.11 酵素結合免疫吸附分析法 ....................................................................... 27
2.12 生物膜干涉技術 (Bio-Layer Interferometry, BLI) ................................. 30
2.12.1 原理 ........................................................................................................... 30
2.12.2 擬合模型 ................................................................................................... 30
2.12.3 實驗參數 ................................................................................................... 32
第三章 結果與討論 ............................................................................................... 36
3.1 用於核醣體展示技術之蛋白質製備 ....................................................... 36
3.1.1 UlaG 蛋白質的純化.................................................................................. 36
3.1.2 UlaG-proBNP 蛋白質的純化 ................................................................... 38
3.1.3 以西方墨點法確認 UlaG 與 UlaG-proBNP ............................................ 39
3.1.4 以酵素結合免疫吸附分析法確認 UlaG、UlaG-proBNP ...................... 40
3.1.5 以膠內水解鑑定 UlaG 與 UlaG-proBNP 身份 ....................................... 41
3.2 核醣體展示技術 ....................................................................................... 42
3.2.1 UlaG-proBNP 與 UlaG 磁珠製備 ............................................................ 42
3.2.2 篩選 ........................................................................................................... 44
3.3 次世代定序與胜肽合成 ........................................................................... 47
3.4 重組蛋白 proBNP 之製備 ........................................................................ 50
3.4.1 重組蛋白 proBNP 的表現 ........................................................................ 50
3.4.2 重組蛋白 proBNP 的純化 ........................................................................ 56
3.4.3 以西方墨點法確認重組蛋白 proBNP ..................................................... 62
3.4.4 以酵素結合免疫吸附分析法確認重組蛋白 proBNP ............................. 63
3.4.5 以膠內水解鑑定重組蛋白 proBNP 身份 ................................................ 64
3.5 生物膜干涉技術 ....................................................................................... 65
3.5.1 固定化胜肽對 UlaG 之特性分析............................................................. 65
3.5.2 固定化胜肽對重組蛋白 proBNP 之特性分析 ........................................ 68
vi
3.6 以酵素結合免疫吸附分析法測定胜肽對 proBNP 之親和力 ................ 87
第四章 結論 ........................................................................................................... 90
第五章 未來展望 ................................................................................................... 91
第六章 參考文獻 ................................................................................................... 92
第七章 附錄 ........................................................................................................... 98
7.1 胺基酸序列 ............................................................................................... 98
7.2 FPLC 層析結果 ......................................................................................... 99
7.3 蛋白質身分比對 ..................................................................................... 107
7.4 胜肽 LC-ESI/MS 結果圖 ........................................................................ 108
7.5 實驗藥品與耗材 ..................................................................................... 116
7.6 溶液配置 ................................................................................................. 119
7.7 實驗儀器 ................................................................................................. 128
1. Roger, V. L., Epidemiology of heart failure. Circ. Res. 2013, 113 (6), 646-659.
2. Fox, K. F.; Cowie, M. R.; Wood, D. A.; Coats, A. J. S.; Gibbs, J. S. R.; Underwood, S. R.; Turner, R. M.; Poole-Wilson, P. A.; Davies, S. W.; Sutton, G. C., Coronary artery disease as the cause of incident heart failure in the population. Eur. Heart J. 2001, 22 (3), 228-236.
3. McDonagh, T. A.; Metra, M.; Adamo, M.; Gardner, R. S.; Baumbach, A.; Bohm, M.; Burri, H.; Butler, J.; Celutkiene, J.; Chioncel, O.; Cleland, J. G. F.; Coats, A. J. S.; Crespo-Leiro, M. G.; Farmakis, D.; Gilard, M.; Heymans, S.; Hoes, A. W.; Jaarsma, T.; Jankowska, E. A.; Lainscak, M.; Lam, C. S. P.; Lyon, A. R.; McMurray, J. J. V.; Mebazaa, A.; Mindham, R.; Muneretto, C.; Francesco Piepoli, M.; Price, S.; Rosano, G. M. C.; Ruschitzka, F.; Kathrine Skibelund, A.; Group, E. S. C. S. D., 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42 (36), 3599-3726.
4. Isomi, M.; Sadahiro, T.; Ieda, M., Progress and Challenge of Cardiac Regeneration to Treat Heart Failure. J. Cardiol. 2019, 73 (2), 97-101.
5. Pinilla-Vera, M.; Hahn, V. S.; Kass, D. A., Leveraging Signaling Pathways to Treat Heart Failure With Reduced Ejection Fraction. Circ. Res. 2019, 124 (11), 1618-1632.
6. Potter, L. R.; Yoder, A. R.; Flora, D. R.; Antos, L. K.; Dickey, D. M., Natriuretic peptides: their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol. 2009, (191), 341-366.
7. Fu, S.; Ping, P.; Wang, F.; Luo, L., Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J. Biol. Eng. 2018, 12, 2.
8. Weber, M.; Hamm, C., Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart 2006, 92 (6), 843-849.
9. Lu, R. M.; Hwang, Y. C.; Liu, I. J.; Lee, C. C.; Tsai, H. Z.; Li, H. J.; Wu, H. C., Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27 (1), 1.
10. Crivianu-Gaita, V.; Thompson, M., Aptamers, antibody scFv, and antibody Fab' fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens. Bioelectron. 2016, 85, 32-45.
11. Ahmad, Z. A.; Yeap, S. K.; Ali, A. M.; Ho, W. Y.; Alitheen, N. B.; Hamid, M., scFv antibody: principles and clinical application. Clin. Dev. Immunol. 2012, 2012, 980250.
12. Anderson, G. P.; Liu, J. L.; Hale, M. L.; Bernstein, R. D.; Moore, M.; Swain, M. D.; Goldman, E. R., Development of Antiricin Single Domain Antibodies Toward Detection and Therapeutic Reagents. Analytical Chemistry 2008, 80 (24), 9604-9611.
13. Reverdatto, S.; Burz, D. S.; Shekhtman, A., Peptide aptamers: development and applications. Curr. Top. Med. Chem. 2015, 15 (12), 1082-1101.
14. Liu, Q.; Wang, J.; Boyd, B. J., Peptide-based biosensors. Talanta 2015, 136, 114-127.
15. Karimzadeh, A.; Hasanzadeh, M.; Shadjou, N.; Guardia, M. d. l., Peptide based biosensors. TrAC Trends in Analytical Chemistry 2018, 107, 1-20.
16. Barbosa, A. J. M.; Oliveira, A. R.; Roque, A. C. A., Protein- and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol. 2018, 36 (12), 1244-1258.
17. Hossein-Nejad-Ariani, H.; Kim, T.; Kaur, K., Peptide-Based Biosensor Utilizing Fluorescent Gold Nanoclusters for Detection of Listeria monocytogenes. ACS Applied Nano Materials 2018, 1 (7), 3389-3397.
18. Li, R.; Kang, G.; Hu, M.; Huang, H., Ribosome Display: A Potent Display Technology used for Selecting and Evolving Specific Binders with Desired Properties. Mol. Biotechnol. 2019, 61 (1), 60-71.
19. Pluckthun, A., Ribosome display: a perspective. Methods Mol. Biol. 2012, 805, 3-28.
20. Sidhu, S. S.; Lowman, H. B.; Cunningham, B. C.; Wells, J. A., Phage display for selection of novel binding peptides. Methods Enzymol. 2000, 328, 333-363.
21. Lee, S. Y.; Choi, J. H.; Xu, Z., Microbial cell-surface display. Trends in Biotechnology 2003, 21 (1), 45-52.
22. Weichhart, T.; Horky, M.; Söllner, J.; Gangl, S.; Henics, T.; Nagy, E.; Meinke, A.; von Gabain, A.; Fraser, C. M.; Gill, S. R.; Hafner, M.; von Ahsen, U., Functional selection of vaccine candidate peptides from Staphylococcus aureus whole-genome expression libraries in vitro. Infect. Immun. 2003, 71 (8), 4633-4641.
23. Josephson, K.; Hartman, M. C. T.; Szostak, J. W., Ribosomal Synthesis of Unnatural Peptides. J. Am. Chem. Soc. 2005, 127 (33), 11727-11735.
24. Douthwaite, J. A.; Groves, M. A.; Dufner, P.; Jermutus, L., An improved method for an efficient and easily accessible eukaryotic ribosome display technology. Protein Eng. Des. Sel. 2006, 19 (2), 85-90.
25. Matsuura, T.; Yanagida, H.; Ushioda, J.; Urabe, I.; Yomo, T., Nascent chain, mRNA, and ribosome complexes generated by a pure translation system. Biochem. Biophys. Res. Commun. 2007, 352 (2), 372-377.
26. Concepcion, J.; Witte, K.; Wartchow, C.; Choo, S.; Yao, D.; Persson, H.; Wei, J.; Li, P.; Heidecker, B.; Ma, W.; Varma, R.; Zhao, L.-S.; Perillat, D.; Carricato, G.; Recknor, M.; Du, K.; Ho, H.; Ellis, T.; Gamez, J.; Howes, M.; Phi-Wilson, J.; Lockard, S.; Zuk, R.; Tan, H., Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization. Combinatorial Chemistry & High Throughput Screening 2009, 12 (8), 791-800.
27. Sultana, A.; Lee, J. E., Measuring protein-protein and protein-nucleic Acid interactions by biolayer interferometry. Curr. Protoc. Protein. Sci. 2015, 79, 19.25.1-19.25.26.
28. Miller, W. L.; Grill, D. E.; Jaffe, A. S., Comparison of novel pro-BNP(1-108) and standard BNP assays in heart failure patients. Clin. Chim. Acta. 2012, 413 (9-10), 920-926.
29. Clerico, A.; Vittorini, S.; Passino, C., Measurement of the pro-hormone of brain type natriuretic peptide (proBNP): methodological considerations and pathophysiological relevance. Clin. Chem. Lab. Med. 2011, 49 (12), 1949-1954.
30. Macheret, F.; Boerrigter, G.; McKie, P.; Costello-Boerrigter, L.; Lahr, B.; Heublein, D.; Sandberg, S.; Ikeda, Y.; Cataliotti, A.; Bailey, K.; Rodeheffer, R.; Burnett, J. C., Jr., Pro-B-type natriuretic peptide(1-108) circulates in the general community: plasma determinants and detection of left ventricular dysfunction. J. Am. Coll. Cardiol. 2011, 57 (12), 1386-1395.
31. Dickey, D. M.; Potter, L. R., ProBNP(1-108) is resistant to degradation and activates guanylyl cyclase-A with reduced potency. Clin. Chem. 2011, 57 (9), 1272-1278.
32. Huang, T.-T.; Hwang, J.-K.; Chen, C.-H.; Chu, C.-S.; Lee, C.-W.; Chen, C.-C., (PS)2: protein structure prediction server version 3.0. Nucleic Acids Research 2015, 43 (W1), W338-W342.
33. Froger, A.; Hall, J. E., Transformation of plasmid DNA into E. coli using the heat shock method. J. Vis. Exp. 2007, (6), 253.
34. Taketo, A., DNA transfection of Escherichia coli by electroporation. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1988, 949 (3), 318-324.
35. Burgess, R. R., Chapter 17 Refolding Solubilized Inclusion Body Proteins. 2009, 463, 259-282.
36. Glynou, K.; Ioannou, P. C.; Christopoulos, T. K., One-step purification and refolding of recombinant photoprotein aequorin by immobilized metal-ion affinity chromatography. Protein Expression and Purification 2003, 27 (2), 384-390.
37. Yin, S.-M.; Zheng, Y.; Tien, P., On-column purification and refolding of recombinant bovine prion protein: using its octarepeat sequences as a natural affinity tag. Protein Expression and Purification 2003, 32 (1), 104-109.
38. Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976, 72 (1), 248-254.
39. Mahmood, T.; Yang, P. C., Western blot: technique, theory, and trouble shooting. N. Am. J. Med. Sc.i 2012, 4 (9), 429-434.
40. Dreier, B.; Pluckthun, A., Ribosome display: a technology for selecting and evolving proteins from large libraries. Methods Mol. Biol. 2011, 687, 283-306.
41. Stafford, R. L.; Matsumoto, M. L.; Yin, G.; Cai, Q.; Fung, J. J.; Stephenson, H.; Gill, A.; You, M.; Lin, S. H.; Wang, W. D.; Masikat, M. R.; Li, X.; Penta, K.; Steiner, A. R.; Baliga, R.; Murray, C. J.; Thanos, C. D.; Hallam, T. J.; Sato, A. K., In vitro Fab display: a cell-free system for IgG discovery. Protein Eng. Des. Sel. 2014, 27 (4), 97-109.
42. Chen, S.; Zhou, Y.; Chen, Y.; Gu, J., fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34 (17), i884-i890.
43. Bolger, A. M.; Lohse, M.; Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30 (15), 2114-2120.
44. Blankenberg, D.; Gordon, A.; Von Kuster, G.; Coraor, N.; Taylor, J.; Nekrutenko, A.; Galaxy, T., Manipulation of FASTQ data with Galaxy. Bioinformatics 2010, 26 (14), 1783-1785.
45. Pace, C. N.; Scholtz, J. M., A helix propensity scale based on experimental studies of peptides and proteins. Biophys. J. 1998, 75 (1), 422-427.
46. Syedbasha, M.; Linnik, J.; Santer, D.; O'Shea, D.; Barakat, K.; Joyce, M.; Khanna, N.; Tyrrell, D. L.; Houghton, M.; Egli, A., An ELISA Based Binding and Competition Method to Rapidly Determine Ligand-receptor Interactions. J. Vis. Exp. 2016, (109).
47. Eble, J. A., Titration ELISA as a Method to Determine the Dissociation Constant of Receptor Ligand Interaction. J. Vis. Exp. 2018, (132).
48. Goutelle, S.; Maurin, M.; Rougier, F.; Barbaut, X.; Bourguignon, L.; Ducher, M.; Maire, P., The Hill equation: a review of its capabilities in pharmacological modelling. Fundam. Clin. Pharmacol. 2008, 22 (6), 633-648.
49. Rosenfeld, J.; Capdevielle, J.; Guillemot, J. C.; Ferrara, P., In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Analytical Biochemistry 1992, 203 (1), 173-179.
50. Lamiable, A.; Thévenet, P.; Rey, J.; Vavrusa, M.; Derreumaux, P.; Tufféry, P., PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Research 2016, 44 (W1), W449-W454.
51. Laigre, E.; Goyard, D.; Tiertant, C.; Dejeu, J.; Renaudet, O., The study of multivalent carbohydrate-protein interactions by bio-layer interferometry. Org. Biomol. Chem. 2018, 16 (46), 8899-8903.
52. Errington, W. J.; Bruncsics, B.; Sarkar, C. A., Mechanisms of noncanonical binding dynamics in multivalent protein-protein interactions. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (51), 25659-25667.
53. Fernandez-Villamarin, M.; Sousa-Herves, A.; Correa, J.; Munoz, E. M.; Taboada, P.; Riguera, R.; Fernandez-Megia, E., The Effect of PEGylation on Multivalent Binding: A Surface Plasmon Resonance and Isothermal Titration Calorimetry Study with Structurally Diverse PEG-Dendritic GATG Copolymers. ChemNanoMat 2016, 2 (5), 437-446.
54. Kim, Y. S.; Karisa, N.; Jeon, W. Y.; Lee, H.; Kim, Y. C.; Ahn, J., High-level production of N-terminal pro-brain natriuretic peptide, as a calibrant of heart failure diagnosis, in Escherichia coli. Appl. Microbiol. Biotechnol. 2019, 103 (12), 4779-4788.
55. Soleh, M. T.; Foo, J. Y.; Bailey, U. M.; Tan, N. Y.; Wan, Y.; Cooper-White, J.; Schulz, B. L.; Punyadeera, C., A rapid and cost-effective method of producing recombinant proBNP and NT-proBNP variants in Escherichia coli for immunoassay of heart failure. Biotechnol. Lett. 2014, 36 (1), 133-140.
56. Hammerling, M. J.; Fritz, B. R.; Yoesep, D. J.; Kim, D. S.; Carlson, E. D.; Jewett, M. C., In vitro ribosome synthesis and evolution through ribosome display. Nat. Commun. 2020, 11 (1), 1108.
57. Zimmermann, I.; Egloff, P.; Hutter, C. A. J.; Kuhn, B. T.; Brauer, P.; Newstead, S.; Dawson, R. J. P.; Geertsma, E. R.; Seeger, M. A., Generation of synthetic nanobodies against delicate proteins. Nat. Protoc. 2020, 15 (5), 1707-1741.
58. Crijns, H.; Adyns, L.; Ganseman, E.; Cambier, S.; Vandekerckhove, E.; Pörtner, N.; Vanbrabant, L.; Struyf, S.; Gerlza, T.; Kungl, A.; Proost, P., Affinity and Specificity for Binding to Glycosaminoglycans Can Be Tuned by Adapting Peptide Length and Sequence. International Journal of Molecular Sciences 2022, 23 (1).
59. González-Fernández, E.; Staderini, M.; Avlonitis, N.; Murray, A. F.; Mount, A. R.; Bradley, M., Effect of spacer length on the performance of peptide-based electrochemical biosensors for protease detection. Sensors and Actuators B 2018, 255, 3040-3046.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊