跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林暐軒
研究生(外文):Lin, Wei-Syuan
論文名稱:用橢圓基底函數神經網路解偏微分方程
論文名稱(外文):Solving PDEs using Elliptic Basis Function Neural Networks
指導教授:賴明治賴明治引用關係
指導教授(外文):Lai, Ming-Chih
口試委員:賴明治林得勝胡偉帆
口試委員(外文):Lai, Ming-ChihLin, Te-ShengHu, Wei-Fan
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用數學系數學建模與科學計算碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:英文
論文頁數:28
中文關鍵詞:徑向基底函數徑向基底函數神經網路帕松方程奇異擾動方程狄氏邊界值問題有物理根據的神經網路Levenberg-Marquardt 方法
外文關鍵詞:Radial basis functionRadial basis function neural networkPossion equationSingularly perturbed equationDirichlet boundary value problemPhysics-informed Neural NetworksLevenberg-Marquardt method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們應用機器學習方法解偏微分方程。我們藉由徑向基底函數神經網路表達解。這篇文章提出新的網路架構改進徑向基底函數神經網路的表達能力。我們將高斯徑向基底函數轉成橢圓基底函數。此新的網路結構稱為橢圓基底函數神經網路。我們應用此網路解偏微分方程。在靜態偏微分方程方面,我們解邊界層問題和震盪問題。在動態偏微分方程方面,我們解Schrödinger 方程和Allen–Cahn 方程。在數值結果上,我們展現橢圓基底函數神經網路可以捕捉解的局部結構,表現的比一般的徑向基底函數神經網路好。
We apply machine learning techniques to solve partial differential equations. We use radical basis function neural networks (RBFNNs) to express the solutions. This thesis proposes the new network architecture to improve the expressive ability of RBFNNs. We turn the Gaussian radial basis function into the elliptic basis function. This new network architecture is called an elliptic basis function neural network (EBFNN). We apply networks to solve the equations. For time-independent cases, we solve boundary layer problems and oscillated problems. For time-dependent
cases, we solve the Schrödinger equation and the Allen–Cahn equation. In the numerical results, we show that the EBFNNs capture the local structures of the solutions, better than the regular RBFNNs.
摘要i
Abstract ii
Contents iii
Figure lists iv
Table lists v
1 Introduction 1
2 Methodology 3
2.1 Latin hypercube sampling 3
2.2 Automatic differentiation 3
2.3 PINNs 3
2.3.1 Continuous-time model 4
2.3.2 Discrete-time model 5
2.4 Optimizer 6
2.5 Network structures 8
2.5.1 Fully-connected neural network 8
2.5.2 Radial basis function neural network 8
3 Elliptic basis function neural networks 11
4 Numerical results 12
4.1 Poisson equations 12
4.2 Oscillatory solutions 15
4.3 Singularly perturbed equations 18
4.4 Time-dependent equations 23
5 Conclusion 27
References 28
[1] K. Hornik, “Multilayer feedforward networks are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.
[2] G. E. K. Maziar Raissi, Paris Perdikaris, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707, 2019.
[3] B. Y. Weinan E, “The deep ritz method: A deep learning-based numerical algorithm for solving variational problems,” Communications in Mathematics and Statistics, vol. 6, 09 2017.
[4] M. Stein, “Large sample properties of simulations using latin hypercube sampling,” Naval Research Logistics Quarterly, vol. 29, pp. 143–151, 1987.
[5] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differentiation in machine learning: a survey,” 2015.
[6] W.F. Hu, T.S. Lin, and M.C. Lai, “A discontinuity capturing shallow neural network for elliptic
interface problems,” ArXiv, vol. abs/2106.05587, 2021.
[7] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function networks,” Neural Computation, vol. 3, no. 2, pp. 246–257, 1991.
[8] D. Pepper, “Meshless methods for PDEs,” Scholarpedia, vol. 5, no. 5, p. 9838, 2010.
[9] W. Chen, Z.J. Fu, and C. Chen, Different Formulations of the Kansa Method: Domain Discretization, pp. 29–50. 11 2014.
[10] P. R. Amuthan A. Ramabathiran, “Sparse, physics-based,
and partially interpretable neural networks for pdes,” Journal of Computational Physics, vol. 445, p. 110600, 2021.
[11] P.W. Hsieh, Y.T. Shih, S.Y. Yang, and C.S. You, “A novel technique for constructing difference schemes for systems of singularly perturbed equations,” Communications in Computational Physics, vol. 19, 05 2016.
[12] R. J. LeVeque, “Finite difference methods for ordinary and partial differential equations,” pp. 43–45.
電子全文 電子全文(網際網路公開日期:20270626)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top