|
1. Tripathi, P. K., Upadhyay, S., Singh, M., Raghavendhar, S., Bhardwaj, M., Sharma, P., & Patel, A. K. Screening and evaluation of approved drugs as inhibitors of main protease of SARS-CoV-2. Int J Biol Macromol, 164, 2622-2631. 2020. 2. Merarchi, M., Dudha, N., Das, B. C., & Garg, M. Natural products and phytochemicals as potential anti-SARS-CoV-2 drugs. Phytother Res, 35(10), 5384–5396. 2021. 3. Ullrich, S., & Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett, 30(17), 127377.2020. 4. Adhikari, B., Marasini, B. P., Rayamajhee, B., Bhattarai, B. R., Lamichhane, G., Khadayat, K., Adhikari, A., Khanal, S., & Parajuli, N. Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother Res, 35(3), 1298-1312. 2021. 5. Hung, H. C., Ke, Y. Y., Huang, S. Y., Huang, P. N., Kung, Y. A., Chang, T. Y., Yen, K. J., Peng, T. T., Chang, S. E., Huang, C. T., Tsai, Y. R., Wu, S. H., Lee, S. J., Lin, J. H., Liu, B. S., Sung, W. C., Shih, S. R., Chen, C. T., & Hsu, J. T. Discovery of M protease inhibitors encoded by SARS-CoV-2. Antimicrob. Agents Chemother., 64(9). 2020. 6. Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., Yang, X., Bai, F., Liu, H., Liu, X., Guddat, L. W., Xu, W., Xiao, G., Qin, C., Shi, Z., Jiang, H., Rao, Z., & Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289-293. 2020. 7. Sharun, K., Tiwari, R., & Dhama, K. Protease inhibitor GC376 for COVID-19: Lessons learned from feline infectious peritonitis. Ann Med Surg (Lond), 61, 122-125. 2020. 8. Kovalevsky, A. Structural plasticity of SARS-CoV-2 3CL M(pro) active site cavity revealed by room temperature X-ray crystallography. Nat Commun, 11(1), 3202. 2020 9. Zhu, W., Xu, M., Chen, C. Z., Guo, H., Shen, M., Hu, X., Shinn, P., Klumpp-Thomas, C., Michael, S. G., & Zheng, W. Identification of SARS-CoV-2 3CL protease inhibitors by a quantitative high-throughput screening. ACS Pharmacol Transl Sci, 3(5), 1008-1016. 2020. 10. Bi, S., Zhou, H., Wu, J., & Sun, X. Micronomicin/tobramycin binding with DNA: fluorescence studies using of ethidium bromide as a probe and molecular docking analysis. J. Biomol. Struct. Dyn., 37(6), 1464-1476. 2019. 11. Oyenihi, A. B., Ayeleso, A. O., Mukwevho, E., & Masola, B. Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int, 2015, 515042. 2015. 12. Bajaj, S., & Khan, A. Antioxidants and diabetes. Indian J Endocrinol Metab, 16(Suppl 2), S267-271. 2012. 13. Pham-Huy, L. A., He, H., & Pham-Huy, C. Free radicals, antioxidants in disease and health. Int J Biomed Sci, 4(2), 89-96. 2008. 14. Johansen, J. S., Harris, A. K., Rychly, D. J., & Ergul, A. Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol, 4, 5. 2015. 15. Chen, X., Guo, C., & Kong, J. Oxidative stress in neurodegenerative diseases. Neural Regen Res, 7(5), 376–385. 2012. 16. Rahimi-Madiseh, M., Malekpour-Tehrani, A., Bahmani, M., & Rafieian-Kopaei, M. The research and development on the antioxidants in prevention of diabetic complications. Asian Pac J Trop Med, 9(9), 825-831. 2016. 17. Bortolotti, M., Mercatelli, D., & Polito, L. Momordica charantia, a nutraceutical approach for inflammatory related diseases. Front. Pharmacol., 10, 486. 2019. 18. Sur, S., Steele, R., Isbell, T. S., Venkata, K. N., Rateb, M. E., & Ray, R. B. Momordicine-I, a bitter melon bioactive metabolite, displays anti-tumor activity in head and neck cancer involving c-Met and downstream signaling. Cancers (Basel), 13(6). 2021. 19. Ogidigo, J. O., Iwuchukwu, E. A., Ibeji, C. U., Okpalefe, O., & Soliman, M. E. S. Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: computational approach. J. Biomol. Struct. Dyn., 40(5), 2284-2301. 2022. 20. Chen, P. Y., Shih, N. L., Hao, W. R., Chen, C. C., Liu, J. C., & Sung, L. C. Inhibitory effects of momordicine I on high-glucose-induced cell proliferation and collagen synthesis in rat cardiac fibroblasts. Oxid Med Cell Longev, 2018, 3939714. 2018. 21. Chou, M. C., Lee, Y. J., Wang, Y. T., Cheng, S. Y., & Cheng, H. L. Cytotoxic and anti-inflammatory triterpenoids in the vines and leaves of momordica charantia. Int J Mol Sci, 23(3). 2022 22. Desmet, T., Soetaert, W., Bojarová, P., Křen, V., Dijkhuizen, L., Eastwick-Field, V., & Schiller, A. Enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chemistry, 18(35), 10786–10801. 2012. 23. Lairson, L. L., Henrissat, B., Davies, G. J., & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu Rev Biochem, 77, 521-555. 2008. 24. Nidetzky, B., Gutmann, A., & Zhong, C. Leloir glycosyltransferases as biocatalysts for chemical production. ACS Catalysis, 8(7), 6283-6300. 2018. 25. Dai, L., Li, J., Yao, P., Zhu, Y., Men, Y., Zeng, Y., Yang, J., & Sun, Y. Exploiting the aglycon promiscuity of glycosyltransferase Bs-YjiC from Bacillus subtilis and its application in synthesis of glycosides. J. Biotechnol, 248, 69-76. 2017. 26. Cialoni, D., Brizzolari, A., Samaja, M., Bosco, G., Paganini, M., Pieri, M., Lancellotti, V., & Marroni, A. Nitric oxide and oxidative stress changes at depth in breath-hold diving. Front. Physiol., 11, 609642. 2021. 27. Becker, M., Nunes, G., Ribeiro, D., Silva, F., Catanante, G., & Marty, J. L. Determination of the antioxidant capacity of red fruits by miniaturized spectrophotometry assays. J Braz Chem Soc. 2019. 28. Arts, M. J. T. J., Sebastiaan Dallinga, J., Voss, H.-P., Haenen, G. R. M. M., & Bast, A. (2004). A new approach to assess the total antioxidant capacity using the TEAC assay. Food Chemistry, 88(4), 567-570. 2004. 29. Vasile, C., Sivertsvik, M., Mitelut, A. C., Brebu, M. A., Stoleru, E., Rosnes, J. T., . . . Popa, M. E. Comparative analysis of the composition and active property evaluation of certain essential oils to assess their potential applications in active food packaging. Materials (Basel), 10(1). 2017. 30. BIOVIA, Dassault Systèmes, BIOVIA discovery studio visualizer, San Diego: Dassault Systèmes, 2021. 31. Zhao, H., & Huang, D. Hydrogen bonding penalty upon ligand binding. PLoS One, 6(6), e19923. 2011. 32. Pantsar, T., & Poso, A. Binding Affinity via Docking: Fact and Fiction. Molecules, 23(8). 2018. 33. Pisoschi, A. M., & Negulescu, G. P. Methods for total antioxidant activity determination: a review. Anal. Bioanal. Chem., 01(01). 2012. 34. Reprinted from “Human Coronavirus Structure”, by BioRender.com (2020). Retrieved from https://app.biorender.com/biorender-templates 35. Snijder, E. J., Decroly, E., & Ziebuhr, J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res, 96, 59-126. 2016. 36. Hsu, K. C., Chen, Y. F., Lin, S. R., & Yang, J. M. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinform., 12 Suppl 1(Suppl 1), S33. 2011. 37. Schrödinger, L., & DeLano, W. PyMOL. 2020. Retrieved from http://www.pymol.org/pymol
|