跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 17:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昭岑
研究生(外文):Chen, Chao-Tsen
論文名稱:使用單一電感雙輸出降壓轉換器於高頻元件上之電源管理
論文名稱(外文):Power management of high-frequency components using single-inductor dual-output buck converter
指導教授:陳科宏陳科宏引用關係
指導教授(外文):Chen, Ke-Horng
口試委員:王清松黃立仁
口試委員(外文):Wang, Ching-SungHuang, Li-Ren
口試日期:20220-01-25
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電機學院電機與控制學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:49
中文關鍵詞:低壓差穩壓器dc-dc降壓轉換器電流遲滯控制閉回路單個電感雙個輸出
外文關鍵詞:Low dropout regulator(LDO)dc-dc converterhysteresis current controlclose loopSingle Inductor Dual Output (SIDO)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:411
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在系統晶片裡,它包括微處理器丶輸入/輸出丶記憶體及電源管理五大區域,從電源管理元件來說就有 DC-DC轉換器丶線性穩壓器丶升/降壓轉換器等等… ; 依產品不同做出不同的組合,目前選擇使用於高頻上的產品(射頻電路及功率放大器…)使用單一電感雙輸出的轉換器供給各電路穩定的不同電壓值,這個轉換器具有閉迴路控制及三個低壓差 (LDO) 穩壓器達到穩定傳輸效率,不隨著負載增加或減少進一步影響應用範圍並增加使用限制。本論文提出了電流遲滯控制閉迴路之單個電感雙個輸出直流-直流降壓轉換器。應用三個低壓差 (LDO) 穩壓器,由負載端控制偵測選擇可達成平穩電壓輸出。同時,線性穩壓器也能吸收來自直流-直流轉換器的噪音問題,低壓差 (LDO) 穩壓器的主要原因是抑制來自電壓源的紋波,對其負載產生不利影響。在高頻區域也需要比較高的較大的直流迴路增益和負載穩壓。它還可以在輸入電壓的 1.8-4.5V 範圍內提供 0.8V 的輸出電壓。這次模擬結果使用TSMC 40nm CMOS BSIM4 模型模擬。
The system chip, it includes five areas: MCU, input/output, memory, and power management. In terms of power management components, there are DC-DC converters, linear regulators (single), generator/buck converters, etc. Etc...; Different combinations are made according to different products. Currently, products used in high-frequency applications (RF circuits and power amplifiers...) use a single-inductor dual-output converter to provide stable and different voltage values for each circuit. This conversion The device has closed-loop control and three linear regulators to achieve stable transmission efficiency, and does not further affect the application range and increase the use limit as the load increases or decreases.
This thesis presents a single-inductor dual-output DC-DC buck converter with current hysteresis control closed loop. Using three low-dropout (LDO) regulators, the load-side control detection selection can achieve a stable voltage output. At the same time, the linear regulator can also absorb the noise problem from the DC-DC converter. The main reason for the low dropout (LDO) regulator is to suppress the ripple from the voltage source to avoid adverse effects on its load. In the high frequency area, a relatively high and large DC loop gain and load regulation are also required. It can also provide an output voltage of 0.8V within the range of 1.8-4.5V of the input voltage. This the results are simulated using TSMC 40nm CMOS BSIM4 model.
中文摘要 i
英文摘要 ii
目 錄 v
圖目錄 vii
表目錄 ix
第一章 簡 介...............................................1
1.1 前言...............................................1
1.2 降壓轉換器的介紹....................................3
1.3 研究動機...........................................7
1.4 論文組織結構........................................8
第二章 單一電感雙輸出_直流_直流降頻轉換器和頻率選擇介紹.....9
2.1 SIDO降壓轉換器的工作原理..........................10
2.2 頻率選擇電路......................................12
2.3 頻率選擇電路波形....................................13
2.3.1 頻率選擇電路的改進................................14
2.4 選頻電路波形.......................................16
2.5 設計目標...........................................17
第三章 低壓降線性穩壓器(LDO)...............................18
3.1 低壓降線性穩壓器(LDO)整體架構.....................18
3.2 LDO的軟性開機電路.................................20
3.3 模擬結果(LDO 負載瞬態)...........................22
3.4 旁路模式壓差.......................................24
第四章 電路實現............................................25
4.1 單一電感雙輸出-直流-直流降頻轉換器的總體架構......25
4.1.1 模擬結果.........................................29
4.2 Dead-time控制和 ZCD...............................30
4.2.1 Bootstrap 電路結構..............................32
4.2.2 能量分配設計....................................33
4.2.3 邏輯控制訊號....................................34
4.3 OCP過電流保護.....................................37
第五章 模擬結果和設計列表..................................38
5.1 SIDO 降壓轉換器模擬結果............................38
5.2 LDO 預充電和 DCDC 負載瞬態模擬結果.................41
5.3 睡眠模式時序.......................................42
5.4 效能與Vin圖.......................................44
5.5 SIDO 轉換器的設計規範..............................45
第六章 結 論.............................................46
參考文獻 .................................................47
參考文獻

[1] Fundamentals of Power Electronics, by Robert W.Erickson,Kluwer Academic
Publishers,2001
[2] Dongsheng Ma, Wing-Hung Ki, and Chi-Ying Tsui, “A pseudo-CCM/DCM SIMO switching converter with freewheel switching,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007-1014, Jun. 2003.
[3] Kyoung-Sil Seol, Young-Jin Woo, Gyu-Hyeong Cho, Gyu-Ha Cho, Jae-Woo Lee, and Sung-Il Kim, “Multiple-output step-up/down switching DC-DC converter with vestigial current control,” ISSCC Dig. Tech. Papers, pp. 442-443, Feb. 2009.
[4] Ming-Hsin Huang, and Ke-Horng Chen, “Single-inductor multi-output (SIMO) DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1099-1111, Apr. 2009.
[5] M. Belloni, E. Bonizzoni, E. Kiseliovas, et al., “A 4-Output Single-Inductor
DCDC Buck Converter with Self-Boosted Switch Drivers and 1.2A Total Output
Current,” ISSCC Dig. Tech. Papers, pp. 444-445, February 2008.
[6] E. Bonizzoni, F. Borghetti, P. Malcovati, F. Maloberti and B. Niessen, "A 200mA 93% Peak Efficiency Single-Inductor Dual-Output DC-DC Buck Converter," 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 2007, pp. 526-619, doi: 10.1109/ISSCC.2007.373526.
[7] X. Jing, P. K. T. Mok and M. C. Lee, "A Wide-Load-Range Constant-Charge-Auto-Hopping Control Single-Inductor-Dual-Output Boost Regulator With Minimized Cross-Regulation," in IEEE Journal of Solid-State Circuits, vol. 46, no. 10, pp. 2350-2362, Oct. 2011, doi: 10.1109/JSSC.2011.2162188.
[8] D. Lu, Y. Qian and Z. Hong, "4.3 An 87%-peak-efficiency DVS-capable single-inductor 4-output DC-DC buck converter with ripple-based adaptive off-time control," 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 82-83, doi: 10.1109/ISSCC.2014.6757347.
[9] H. Le, C. Chae, K. Lee, S. Wang, G. Cho and G. Cho, "A Single-Inductor Switching DC–DC Converter With Five Outputs and Ordered Power-Distributive Control," in IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007, doi: 10.1109/JSSC.2007.908767.
[10] D. Kwon and G. A. Rincon-Mora, "Single-Inductor–Multiple-Output Switching DC–DC Converters," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 8, pp. 614-618, Aug. 2009, doi: 10.1109/TCSII.2009.2025629.
[11] Y.-K. Luo, et al., “Time-Multiplexing Current Balance Interleaved Current-Mode Boost DC-DC Converter for Alleviating the Effects of Right-half-plane Zero,” IEEE Transactions on Power Electronics, vol. 27, no. 9, pp. 4098-4112, Sep. 2012.
[12] Younghyun Lim, et al., “An External Capacitor less Low-Dropout Regulator With High PSR at All Frequencies From 10 kHz to 1 GHz Using an Adaptive Supply-Ripple Cancellation Technique,” IEEE Journal of Solid-State Circuits, Vol.53, Issue: 9, pp.2675 – 2685, Sept. 2018
[13] Y. Lee et al., "Interleaving Energy-Conservation Mode (IECM) Control in Single-Inductor Dual-Output (SIDO) Step-Down Converters With 91% Peak Efficiency," in IEEE Journal of Solid-State Circuits, vol. 46, no. 4, pp. 904-915, April 2011, doi: 10.1109/JSSC.2011.2108850.
[14] M.-W. Ko, et al., “A 97% High-Efficiency 6μs Fast-Recovery-Time Buck- Based Step-Up/Down Converter with Embedded 1/2 and 3/2 Charge-Pumps for Li-Ion Battery Management,” IEEE International Conference on Solid-State Circuits Dig. Tech. Papers, pp. 428-430, Feb. 2018.
[15] Y. –M. Ju, et al., “A hybrid inductor-based flying-capacitor-assisted step-up/step-down DC-DC converter with 96.56% efficiency,” IEEE International Conference on Solid-State Circuits Dig. Tech. Papers, pp. 184-185, Feb. 2017.
[16] W.-C. Liu., et al., “A Three-Level Boost Converter With Full-Range Auto-Capacitor-Compensation Pulse Frequency Modulation,” IEEE Journal of Solid-State Circuits, vol. 55, no. 3, pp. 744-755, Mar. 2020.
[17] D. S. Ma, W. H. Ki, C. Y. Tsui, and P. K. T. Mok, “Single inductor multiple output switching converters with time multiplexing control in discontinuous conduction mode,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 89-100. Jan. 2003.
[18] J. Xu, Z. Weng, H. Jiang, C. Zhang, Z. Wang and Q. Lin, "A high efficiency single-inductor dual-output buck converter with adaptive freewheel current and hybrid mode control," 2016 IEEE International Symposium on Circuits and Systems (ISCAS), 2016, pp. 1614-1617, doi: 10.1109/ISCAS.2016.7538874.
[19] J. F. Dickson, "On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique," in IEEE Journal of Solid-State Circuits, vol. 11, no. 3, pp. 374-378, June 1976, doi: 10.1109/JSSC.1976.1050739.
[20] C. K. Chava, and J. Silva-Martinez, “A frequency compensation scheme for LDO
voltage regulators,” IEEE Transation on Circuits and Systems I, vol. 51, pp.
1041-1050, June. 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 應用於300公尺遠距離物體偵測可提供200瓦高功率光達系統並具有保護及能量回收技術及4伏至40伏寬輸入範圍的升壓轉換器
2. 以可自我調變式的補償電容及補償電阻來實現可自我調變相位裕度達到快速暫態響應之電流模式直流直流降壓轉換器
3. 具快速暫態響應之平均電流模式降壓型直流直流電源轉換器
4. 具有99.99%電流效率以及0.5mV低輸出電壓漣波的用於改善電源電壓調整率之前饋控制數位低壓降穩壓器
5. 應用於高功率降壓轉換器的高精度電流檢測技術之自校準重建電路
6. 應用於車載48V至1V 降壓轉換器使用高電壓存儲低電壓升壓自舉技術及早期比較導通時間產生器可達到準確的納秒脈衝及92.8%的高效率
7. 利用數位自動歸零方法達成誤差小於1%之雙向電流感測應用於20A之高功率降壓轉換器
8. 具有基於氮化鎵之二極體等效技術的積體化氮化鎵驅動器及氮化鎵功率開關實現50MHz操作頻率及小於0.2ns的死區時間控制
9. -10至-20V具有閾值電壓追蹤技術的反向升降壓驅動氮化鎵驅動器達到小於1µA漏電流並應用於20MHz空乏型氮化鎵金屬-絕緣體-半導體高電子遷移率電晶體
10. 應用可攜式螢幕顯示器控制電路電源的直流對直流降壓轉換器
11. 具暫態響應增強技術之多相位切換式電容增壓轉換器
12. 應用於射頻獵能系統且具有改進負載瞬態響應的雙模式無縫切換低壓降線性穩壓器
13. 系統穩定度之研究與對策
14. 峰值效率94.3%且具有0.03mV/mA低串擾與185nA極低靜態電流的自適應切換CCM與DCM單電感多輸出升降壓轉換器
15. 具復位機制用於改善負載調節恆定導通時間降壓轉換器